高温下层状(NdNiO3)n:NdO薄膜大低场磁阻的观察

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yanan Zhao, Yufei Yao, Ping Li, Zhilu Ye, Minye Yang, Zicong Zhou, Guannan Yang, Lin Han, Zidong Wang, Yan Zhou, Jingrui Li, Haixia Liu, Guohua Dong, Bin Peng, Qian Li, Zhixin Guo, Ming Liu
{"title":"高温下层状(NdNiO3)n:NdO薄膜大低场磁阻的观察","authors":"Yanan Zhao, Yufei Yao, Ping Li, Zhilu Ye, Minye Yang, Zicong Zhou, Guannan Yang, Lin Han, Zidong Wang, Yan Zhou, Jingrui Li, Haixia Liu, Guohua Dong, Bin Peng, Qian Li, Zhixin Guo, Ming Liu","doi":"10.1002/adma.202415426","DOIUrl":null,"url":null,"abstract":"Large low-field magnetoresistance (LFMR, &lt; 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden–Popper structures (ABO<sub>3</sub>)<i><sub>n</sub></i>:AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures. Here, a remarkable LFMR of up to 1.0×10<sup>3</sup>% is obtained in the layered (NdNiO<sub>3</sub>)<i><sub>n</sub></i>:NdO films with a high and wide temperature range (190–240 K). This finding underlines that the layered (NdNiO<sub>3</sub>)<i><sub>n</sub></i>:NdO (<i>n</i> = 1) structure show a complex magnetic structure above T<sub>MI</sub> of perovskite NdNiO<sub>3</sub>, where small ferromagnetic domains are embedded in the antiferromagnetic domains, raising the tunneling barriers and magnetic fluctuations at high temperatures. Furthermore, applying a low magnetic field (&lt;0.1 T) near T<sub>MI</sub> effectively mitigates the disruption of antiferromagnetic order structures at boundaries, then a higher temperature is required to break the inhibition of ferromagnetic to antiferromagnetic phase transition. The results contribute significantly to the advancement of magnetic devices capable of achieving substantial LFMR at room temperature.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"3 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of Large Low-Field Magnetoresistance in Layered (NdNiO3)n:NdO Films at High Temperatures\",\"authors\":\"Yanan Zhao, Yufei Yao, Ping Li, Zhilu Ye, Minye Yang, Zicong Zhou, Guannan Yang, Lin Han, Zidong Wang, Yan Zhou, Jingrui Li, Haixia Liu, Guohua Dong, Bin Peng, Qian Li, Zhixin Guo, Ming Liu\",\"doi\":\"10.1002/adma.202415426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large low-field magnetoresistance (LFMR, &lt; 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden–Popper structures (ABO<sub>3</sub>)<i><sub>n</sub></i>:AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures. Here, a remarkable LFMR of up to 1.0×10<sup>3</sup>% is obtained in the layered (NdNiO<sub>3</sub>)<i><sub>n</sub></i>:NdO films with a high and wide temperature range (190–240 K). This finding underlines that the layered (NdNiO<sub>3</sub>)<i><sub>n</sub></i>:NdO (<i>n</i> = 1) structure show a complex magnetic structure above T<sub>MI</sub> of perovskite NdNiO<sub>3</sub>, where small ferromagnetic domains are embedded in the antiferromagnetic domains, raising the tunneling barriers and magnetic fluctuations at high temperatures. Furthermore, applying a low magnetic field (&lt;0.1 T) near T<sub>MI</sub> effectively mitigates the disruption of antiferromagnetic order structures at boundaries, then a higher temperature is required to break the inhibition of ferromagnetic to antiferromagnetic phase transition. The results contribute significantly to the advancement of magnetic devices capable of achieving substantial LFMR at room temperature.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202415426\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415426","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大低场磁阻(LFMR, <;1 T),与多晶锰酸盐边界的自旋无序散射或自旋极化隧道有关,在低功率和超快磁性器件的开发中具有相当大的前景。然而,由于自旋极化随着温度的升高而减弱,实现显著的LFMR通常需要极低的温度。为了应对这一挑战,一种策略是结合Ruddlesden-Popper结构(ABO3)n:AO,这是钙钛矿结构的层状衍生物,能够在更高温度下潜在地引起更高的磁波动。在高宽温度范围(190 ~ 240 K)下,层状(NdNiO3)n:NdO薄膜的LFMR高达1.0×103%。这一发现表明层状(NdNiO3)n:NdO (n = 1)结构在钙钛矿NdNiO3的TMI之上显示出复杂的磁性结构,其中小铁磁畴嵌入在反铁磁畴中,提高了高温下的隧穿势垒和磁波动。此外,在TMI附近施加低磁场(<0.1 T)可以有效地减轻边界处反铁磁有序结构的破坏,然后需要更高的温度来打破铁磁向反铁磁相变的抑制。这一结果对能够在室温下实现大量LFMR的磁性器件的进步做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Observation of Large Low-Field Magnetoresistance in Layered (NdNiO3)n:NdO Films at High Temperatures

Observation of Large Low-Field Magnetoresistance in Layered (NdNiO3)n:NdO Films at High Temperatures
Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden–Popper structures (ABO3)n:AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures. Here, a remarkable LFMR of up to 1.0×103% is obtained in the layered (NdNiO3)n:NdO films with a high and wide temperature range (190–240 K). This finding underlines that the layered (NdNiO3)n:NdO (n = 1) structure show a complex magnetic structure above TMI of perovskite NdNiO3, where small ferromagnetic domains are embedded in the antiferromagnetic domains, raising the tunneling barriers and magnetic fluctuations at high temperatures. Furthermore, applying a low magnetic field (<0.1 T) near TMI effectively mitigates the disruption of antiferromagnetic order structures at boundaries, then a higher temperature is required to break the inhibition of ferromagnetic to antiferromagnetic phase transition. The results contribute significantly to the advancement of magnetic devices capable of achieving substantial LFMR at room temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信