{"title":"Two-Dimensional Square Lattice of Colloidal Particles Formed by Electrostatic Adsorption in Confined Space","authors":"Yurina Aoyama, Akiko Toyotama, Tohru Okuzono, Tatsuya Ishikawa, Koichiro Hyodo, Masaya Nishida, Junpei Yamanaka","doi":"10.1021/acs.langmuir.4c04480","DOIUrl":null,"url":null,"abstract":"In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption. This work presents the synthesis of 2D crystals with square lattices─a configuration widely used in photonics. We prepared 3D colloidal crystals of silica particles with four-fold symmetry in a micrometer-scale gap between two coverslips. The bottom glass surface is modified with a cationic silane coupling reagent, aminopropyltriethoxysilane, generating pH-responsive charge characteristics with an isoelectric point (iep) near pH 8. When the pH is greater than iep, the surface is charged negatively. As pH decreases below iep, the sign of the surface charge reverses to positive. Controlled pH lowering below the iep induces adsorption of the lowermost lattice plane of 3D crystals onto the substrate, yielding 2D crystals with a distinct square lattice. We further synthesized three-layer body-centered cubic (BCC) structures by stacking alternating layers of the 2D square lattices of silica and polystyrene particles. By aligning the refractive index of the surrounding medium (aqueous solution of ethylene glycol) with that of silica particles, we successfully fabricated a structure that is optically identical to a simple cubic lattice. These findings advance the development of 2D crystalline materials for photonic and plasmonic applications.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"24 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04480","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Two-Dimensional Square Lattice of Colloidal Particles Formed by Electrostatic Adsorption in Confined Space
In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption. This work presents the synthesis of 2D crystals with square lattices─a configuration widely used in photonics. We prepared 3D colloidal crystals of silica particles with four-fold symmetry in a micrometer-scale gap between two coverslips. The bottom glass surface is modified with a cationic silane coupling reagent, aminopropyltriethoxysilane, generating pH-responsive charge characteristics with an isoelectric point (iep) near pH 8. When the pH is greater than iep, the surface is charged negatively. As pH decreases below iep, the sign of the surface charge reverses to positive. Controlled pH lowering below the iep induces adsorption of the lowermost lattice plane of 3D crystals onto the substrate, yielding 2D crystals with a distinct square lattice. We further synthesized three-layer body-centered cubic (BCC) structures by stacking alternating layers of the 2D square lattices of silica and polystyrene particles. By aligning the refractive index of the surrounding medium (aqueous solution of ethylene glycol) with that of silica particles, we successfully fabricated a structure that is optically identical to a simple cubic lattice. These findings advance the development of 2D crystalline materials for photonic and plasmonic applications.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).