高可逆Zn金属阳极界面氢键网络对Zn2+脱溶动力学的调控

IF 20.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Qi Yang , Li Guo , Zhenjie Liu , Jingyuan Wang , Haihan Luo , Xiaofeng Zhang , Qizhi He , Xueyi Chen , Meilin Li , Zihan Wang , Yue Jiang , Rongfeng Yuan , Zhuoxin Liu , Kai Zhang , Zhe Hu , Yang Huang
{"title":"高可逆Zn金属阳极界面氢键网络对Zn2+脱溶动力学的调控","authors":"Qi Yang ,&nbsp;Li Guo ,&nbsp;Zhenjie Liu ,&nbsp;Jingyuan Wang ,&nbsp;Haihan Luo ,&nbsp;Xiaofeng Zhang ,&nbsp;Qizhi He ,&nbsp;Xueyi Chen ,&nbsp;Meilin Li ,&nbsp;Zihan Wang ,&nbsp;Yue Jiang ,&nbsp;Rongfeng Yuan ,&nbsp;Zhuoxin Liu ,&nbsp;Kai Zhang ,&nbsp;Zhe Hu ,&nbsp;Yang Huang","doi":"10.1016/j.ensm.2025.104028","DOIUrl":null,"url":null,"abstract":"<div><div>The uniform plating on zinc metal anode (ZMA) is imperative for stable aqueous zinc-ion batteries (AZIBs). However, the sluggish desolvation of hydrated Zn<sup>2+</sup> is identified as the primary source of kinetic barriers in plating process, leading to dendrite growth and parasitic reaction. Herein, we introduce chitosan oligosaccharide (COS) as an interfacial hydrogen bond network constructor on ZMA surface to enhance the desolvation kinetics of hydrated Zn<sup>2+</sup>. Specifically, COS molecules preferentially adsorb on the ZMA surface, where desolvated H<sub>2</sub>O from plating process can be immobilized by the multiple hydroxyl groups of COS. In addition, COS molecules capture hydrated Zn<sup>2+</sup> through their amino groups, resulting in superior Zn<sup>2+</sup> transport capability. Consequently, the introduction of COS into Zn(OTF)<sub>2</sub> electrolyte enables a lower nucleation overpotential (358 mV) and activation energy (32.34 kJ mol<sup>-1</sup>) for plating. Such advantages further enable Zn||Zn symmetric battery to achieve a cycle life exceeding 1800 h, Zn||Cu battery to realize a high Coulombic efficiency of 99.68 %, and Zn||Zn<sub>x</sub>V<sub>2</sub>O<sub>5</sub> full battery to reach a considerable capacity retention of 83.56 % over 1000 cycles. The application of interfacial hydrogen bond network provides a novel perspective for optimizing the desolvation of Zn<sup>2+</sup> plating on ZMAs.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"75 ","pages":"Article 104028"},"PeriodicalIF":20.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of Zn2+ desolvation kinetics via interfacial hydrogen-bond network for a highly reversible Zn metal anode\",\"authors\":\"Qi Yang ,&nbsp;Li Guo ,&nbsp;Zhenjie Liu ,&nbsp;Jingyuan Wang ,&nbsp;Haihan Luo ,&nbsp;Xiaofeng Zhang ,&nbsp;Qizhi He ,&nbsp;Xueyi Chen ,&nbsp;Meilin Li ,&nbsp;Zihan Wang ,&nbsp;Yue Jiang ,&nbsp;Rongfeng Yuan ,&nbsp;Zhuoxin Liu ,&nbsp;Kai Zhang ,&nbsp;Zhe Hu ,&nbsp;Yang Huang\",\"doi\":\"10.1016/j.ensm.2025.104028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The uniform plating on zinc metal anode (ZMA) is imperative for stable aqueous zinc-ion batteries (AZIBs). However, the sluggish desolvation of hydrated Zn<sup>2+</sup> is identified as the primary source of kinetic barriers in plating process, leading to dendrite growth and parasitic reaction. Herein, we introduce chitosan oligosaccharide (COS) as an interfacial hydrogen bond network constructor on ZMA surface to enhance the desolvation kinetics of hydrated Zn<sup>2+</sup>. Specifically, COS molecules preferentially adsorb on the ZMA surface, where desolvated H<sub>2</sub>O from plating process can be immobilized by the multiple hydroxyl groups of COS. In addition, COS molecules capture hydrated Zn<sup>2+</sup> through their amino groups, resulting in superior Zn<sup>2+</sup> transport capability. Consequently, the introduction of COS into Zn(OTF)<sub>2</sub> electrolyte enables a lower nucleation overpotential (358 mV) and activation energy (32.34 kJ mol<sup>-1</sup>) for plating. Such advantages further enable Zn||Zn symmetric battery to achieve a cycle life exceeding 1800 h, Zn||Cu battery to realize a high Coulombic efficiency of 99.68 %, and Zn||Zn<sub>x</sub>V<sub>2</sub>O<sub>5</sub> full battery to reach a considerable capacity retention of 83.56 % over 1000 cycles. The application of interfacial hydrogen bond network provides a novel perspective for optimizing the desolvation of Zn<sup>2+</sup> plating on ZMAs.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"75 \",\"pages\":\"Article 104028\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829725000297\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725000297","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锌金属阳极(ZMA)的均匀电镀是稳定水锌离子电池(AZIBs)的必要条件。然而,水合Zn2+的缓慢溶解被认为是电镀过程中动力学障碍的主要来源,导致枝晶生长和寄生反应。本文在ZMA表面引入壳寡糖(COS)作为界面氢键网络构建物,以提高水合Zn2+的脱溶动力学。具体来说,COS分子优先吸附在ZMA表面,在ZMA表面,COS的多个羟基可以固定电镀过程中脱溶的H2O。此外,COS分子通过其氨基捕获水合Zn2+,从而具有优越的Zn2+运输能力。因此,在Zn(OTF)2电解液中引入COS,可以降低镀层的成核过电位(358 mV)和活化能(32.34 kJ mol-1)。这些优点进一步使Zn||Zn对称电池实现了超过1800小时的循环寿命,Zn||Cu电池实现了99.68%的高库仑效率,Zn||ZnxV2O5全电池在1000次循环中达到了83.56%的可观容量保持率。界面氢键网络的应用为优化Zn2+在ZMAs上的脱溶提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regulation of Zn2+ desolvation kinetics via interfacial hydrogen-bond network for a highly reversible Zn metal anode
The uniform plating on zinc metal anode (ZMA) is imperative for stable aqueous zinc-ion batteries (AZIBs). However, the sluggish desolvation of hydrated Zn2+ is identified as the primary source of kinetic barriers in plating process, leading to dendrite growth and parasitic reaction. Herein, we introduce chitosan oligosaccharide (COS) as an interfacial hydrogen bond network constructor on ZMA surface to enhance the desolvation kinetics of hydrated Zn2+. Specifically, COS molecules preferentially adsorb on the ZMA surface, where desolvated H2O from plating process can be immobilized by the multiple hydroxyl groups of COS. In addition, COS molecules capture hydrated Zn2+ through their amino groups, resulting in superior Zn2+ transport capability. Consequently, the introduction of COS into Zn(OTF)2 electrolyte enables a lower nucleation overpotential (358 mV) and activation energy (32.34 kJ mol-1) for plating. Such advantages further enable Zn||Zn symmetric battery to achieve a cycle life exceeding 1800 h, Zn||Cu battery to realize a high Coulombic efficiency of 99.68 %, and Zn||ZnxV2O5 full battery to reach a considerable capacity retention of 83.56 % over 1000 cycles. The application of interfacial hydrogen bond network provides a novel perspective for optimizing the desolvation of Zn2+ plating on ZMAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信