Mg(SPh)2作为活性亚甲基化合物与非活性烯烃高效光催化烷基化反应的催化剂

IF 4.4 2区 化学 Q2 CHEMISTRY, APPLIED
Yasuhiro Yamashita, Tomoya Hisada, Yuki Sato, Shu Kobayashi
{"title":"Mg(SPh)2作为活性亚甲基化合物与非活性烯烃高效光催化烷基化反应的催化剂","authors":"Yasuhiro Yamashita, Tomoya Hisada, Yuki Sato, Shu Kobayashi","doi":"10.1002/adsc.202401554","DOIUrl":null,"url":null,"abstract":"Mg(SPh)2 has been found to be a highly active catalyst in photocatalytic alkylation reactions of active methylene compounds with nonactivated alkenes. The desired reactions proceeded smoothly to afford the corresponding alkylated products in high yields with low catalyst loadings (0.2-0.3 mol%). This protocol is applicable to a continuous-flow system. Notably, magnesium is an earth-abundant metal, and Mg(SPh)2 exhibits higher catalytic activity than the previously reported LiSPh.","PeriodicalId":118,"journal":{"name":"Advanced Synthesis & Catalysis","volume":"24 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mg(SPh)2 as a Catalyst for Efficient Photocatalytic Alkylation Reactions of Active Methylene Compounds with Nonactivated Alkenes\",\"authors\":\"Yasuhiro Yamashita, Tomoya Hisada, Yuki Sato, Shu Kobayashi\",\"doi\":\"10.1002/adsc.202401554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mg(SPh)2 has been found to be a highly active catalyst in photocatalytic alkylation reactions of active methylene compounds with nonactivated alkenes. The desired reactions proceeded smoothly to afford the corresponding alkylated products in high yields with low catalyst loadings (0.2-0.3 mol%). This protocol is applicable to a continuous-flow system. Notably, magnesium is an earth-abundant metal, and Mg(SPh)2 exhibits higher catalytic activity than the previously reported LiSPh.\",\"PeriodicalId\":118,\"journal\":{\"name\":\"Advanced Synthesis & Catalysis\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Synthesis & Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/adsc.202401554\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Synthesis & Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/adsc.202401554","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在活性亚甲基化合物与非活性烯烃的光催化烷基化反应中,Mg(SPh)2具有很高的催化活性。所需的反应进行顺利,以低催化剂负载(0.2-0.3 mol%)的高收率得到相应的烷基化产物。该协议适用于连续流系统。值得注意的是,镁是地球上丰富的金属,Mg(SPh)2表现出比先前报道的LiSPh更高的催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mg(SPh)2 as a Catalyst for Efficient Photocatalytic Alkylation Reactions of Active Methylene Compounds with Nonactivated Alkenes
Mg(SPh)2 has been found to be a highly active catalyst in photocatalytic alkylation reactions of active methylene compounds with nonactivated alkenes. The desired reactions proceeded smoothly to afford the corresponding alkylated products in high yields with low catalyst loadings (0.2-0.3 mol%). This protocol is applicable to a continuous-flow system. Notably, magnesium is an earth-abundant metal, and Mg(SPh)2 exhibits higher catalytic activity than the previously reported LiSPh.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Synthesis & Catalysis
Advanced Synthesis & Catalysis 化学-应用化学
CiteScore
9.40
自引率
7.40%
发文量
447
审稿时长
1.8 months
期刊介绍: Advanced Synthesis & Catalysis (ASC) is the leading primary journal in organic, organometallic, and applied chemistry. The high impact of ASC can be attributed to the unique focus of the journal, which publishes exciting new results from academic and industrial labs on efficient, practical, and environmentally friendly organic synthesis. While homogeneous, heterogeneous, organic, and enzyme catalysis are key technologies to achieve green synthesis, significant contributions to the same goal by synthesis design, reaction techniques, flow chemistry, and continuous processing, multiphase catalysis, green solvents, catalyst immobilization, and recycling, separation science, and process development are also featured in ASC. The Aims and Scope can be found in the Notice to Authors or on the first page of the table of contents in every issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信