Samuel Clémot-Dupont, José Alex Lourenço Fernandes, Sarah Larrigan, Xiaoqi Sun, Suma Medisetti, Rory Stanley, Ziyad El Hankouri, Shrilaxmi V. Joshi, David J. Picketts, Karthik Shekhar, Pierre Mattar
{"title":"染色质重塑剂ADNP调节神经发育障碍风险基因和新皮质神经发生","authors":"Samuel Clémot-Dupont, José Alex Lourenço Fernandes, Sarah Larrigan, Xiaoqi Sun, Suma Medisetti, Rory Stanley, Ziyad El Hankouri, Shrilaxmi V. Joshi, David J. Picketts, Karthik Shekhar, Pierre Mattar","doi":"10.1073/pnas.2405981122","DOIUrl":null,"url":null,"abstract":"Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo <jats:italic>ADNP</jats:italic> mutations lead to intellectual disability and autism spectrum disorder. However, germline <jats:italic>Adnp</jats:italic> knockout mice were previously shown to exhibit early embryonic lethality, obscuring subsequent roles for the ChAHP complex in neurogenesis. To circumvent this early developmental arrest, we generated a conditional <jats:italic>Adnp</jats:italic> mutant allele. Using single-cell transcriptomics, cut&run-seq, and histological approaches, we show that during neocortical development, Adnp orchestrates the production of late-born, upper-layer neurons through a two-step process. First, Adnp is required to sustain progenitor proliferation specifically during the developmental window for upper-layer cortical neurogenesis. Accordingly, we found that Adnp recruits the ChAHP subunit Chd4 to genes associated with progenitor proliferation. Second, in postmitotic differentiated neurons, we define a network of risk genes linked to NDDs that are regulated by Adnp and Chd4. Taken together, these data demonstrate that ChAHP is critical for driving the expansion of upper-layer cortical neurons and for regulating neuronal gene expression programs, suggesting that these processes may potentially contribute to NDD etiology.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"48 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The chromatin remodeler ADNP regulates neurodevelopmental disorder risk genes and neocortical neurogenesis\",\"authors\":\"Samuel Clémot-Dupont, José Alex Lourenço Fernandes, Sarah Larrigan, Xiaoqi Sun, Suma Medisetti, Rory Stanley, Ziyad El Hankouri, Shrilaxmi V. Joshi, David J. Picketts, Karthik Shekhar, Pierre Mattar\",\"doi\":\"10.1073/pnas.2405981122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo <jats:italic>ADNP</jats:italic> mutations lead to intellectual disability and autism spectrum disorder. However, germline <jats:italic>Adnp</jats:italic> knockout mice were previously shown to exhibit early embryonic lethality, obscuring subsequent roles for the ChAHP complex in neurogenesis. To circumvent this early developmental arrest, we generated a conditional <jats:italic>Adnp</jats:italic> mutant allele. Using single-cell transcriptomics, cut&run-seq, and histological approaches, we show that during neocortical development, Adnp orchestrates the production of late-born, upper-layer neurons through a two-step process. First, Adnp is required to sustain progenitor proliferation specifically during the developmental window for upper-layer cortical neurogenesis. Accordingly, we found that Adnp recruits the ChAHP subunit Chd4 to genes associated with progenitor proliferation. Second, in postmitotic differentiated neurons, we define a network of risk genes linked to NDDs that are regulated by Adnp and Chd4. Taken together, these data demonstrate that ChAHP is critical for driving the expansion of upper-layer cortical neurons and for regulating neuronal gene expression programs, suggesting that these processes may potentially contribute to NDD etiology.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2405981122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2405981122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The chromatin remodeler ADNP regulates neurodevelopmental disorder risk genes and neocortical neurogenesis
Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo ADNP mutations lead to intellectual disability and autism spectrum disorder. However, germline Adnp knockout mice were previously shown to exhibit early embryonic lethality, obscuring subsequent roles for the ChAHP complex in neurogenesis. To circumvent this early developmental arrest, we generated a conditional Adnp mutant allele. Using single-cell transcriptomics, cut&run-seq, and histological approaches, we show that during neocortical development, Adnp orchestrates the production of late-born, upper-layer neurons through a two-step process. First, Adnp is required to sustain progenitor proliferation specifically during the developmental window for upper-layer cortical neurogenesis. Accordingly, we found that Adnp recruits the ChAHP subunit Chd4 to genes associated with progenitor proliferation. Second, in postmitotic differentiated neurons, we define a network of risk genes linked to NDDs that are regulated by Adnp and Chd4. Taken together, these data demonstrate that ChAHP is critical for driving the expansion of upper-layer cortical neurons and for regulating neuronal gene expression programs, suggesting that these processes may potentially contribute to NDD etiology.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.