暗物质在硅和锗中的电子激发与深度学习

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Riccardo Catena, Einar Urdshals
{"title":"暗物质在硅和锗中的电子激发与深度学习","authors":"Riccardo Catena, Einar Urdshals","doi":"10.1103/physrevd.111.l011702","DOIUrl":null,"url":null,"abstract":"We train a deep neural network (DNN) to output rates of dark matter (DM) induced electron excitations in silicon and germanium detectors. Our DNN provides a massive speedup of around 5 orders of magnitude relative to existing methods (i.e., dark-), allowing for extensive parameter scans in the event of an observed DM signal. The network is also lighter and simpler to use than alternative computational frameworks based on a direct calculation of the DM-induced excitation rate. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"118 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dark matter-induced electron excitations in silicon and germanium with deep learning\",\"authors\":\"Riccardo Catena, Einar Urdshals\",\"doi\":\"10.1103/physrevd.111.l011702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We train a deep neural network (DNN) to output rates of dark matter (DM) induced electron excitations in silicon and germanium detectors. Our DNN provides a massive speedup of around 5 orders of magnitude relative to existing methods (i.e., dark-), allowing for extensive parameter scans in the event of an observed DM signal. The network is also lighter and simpler to use than alternative computational frameworks based on a direct calculation of the DM-induced excitation rate. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.l011702\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.l011702","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们训练了一个深度神经网络(DNN)来输出硅和锗探测器中暗物质(DM)诱导的电子激发率。我们的DNN相对于现有方法(即dark-)提供了大约5个数量级的巨大加速,允许在观察到DM信号的情况下进行广泛的参数扫描。与基于直接计算dm诱导激励率的替代计算框架相比,该网络也更轻,更易于使用。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dark matter-induced electron excitations in silicon and germanium with deep learning
We train a deep neural network (DNN) to output rates of dark matter (DM) induced electron excitations in silicon and germanium detectors. Our DNN provides a massive speedup of around 5 orders of magnitude relative to existing methods (i.e., dark-), allowing for extensive parameter scans in the event of an observed DM signal. The network is also lighter and simpler to use than alternative computational frameworks based on a direct calculation of the DM-induced excitation rate. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信