Mengliang Ma , Qiang Li , Yaping Wang , Jin Liang , Jiangyao Wang , Jinliang Liu , Mingfang Zhang
{"title":"降雨强度决定了修正Gash模型的冠层拦截模拟精度","authors":"Mengliang Ma , Qiang Li , Yaping Wang , Jin Liang , Jiangyao Wang , Jinliang Liu , Mingfang Zhang","doi":"10.1016/j.agrformet.2025.110389","DOIUrl":null,"url":null,"abstract":"<div><div>Rainfall canopy interception plays a crucial role in rainfall redistribution and hydrological processes in forests. While previous studies have often focused on monthly or yearly time scales, the responses of forest canopy interception to different rainfall magnitudes, frequencies and intensities, particularly under changing climate conditions have been less explored. In addition, the performance of canopy interception models that capture the dynamics of rainfall interception under changing climate remains largely unknown. In this study, we conducted field observations across various tree species and used the Revised Gash model to evaluate the canopy interception under different rainfall intensities. Our findings revealed that the observed interception loss of gross precipitation were 26.1 %, 42.1 %, and 41.6 % for <em>Pinus tabuliformis</em> (<em>PT</em>), <em>Quercus wutaishanica</em> (<em>QW</em>), and <em>Betula platyphylla</em> (<em>BP</em>), respectively. The Revised Gash model accurately estimated canopy interception, with percentage errors of 0.4 %, 5.6 %, and 22.3 % for <em>PT, QW</em>, and <em>BP</em>, respectively. Interestingly, the model performed better for <em>PT</em>, especially under light to moderate rain, while its applicability for <em>QW</em> and <em>BP</em> were diminished under moderate to heavy rain. Overall, the Revised Gash model underestimated interception loss across different rainfall intensities, with more pronounced underestimations observed at higher rainfall intensities. Evaporation during and after rainfall contributed significantly to over 85.3 % of interception loss across three tree species. Sensitivity analysis highlighted that parameters including mean rainfall intensity, mean wet canopy evaporation rate, and canopy storage capacity were critical in influencing canopy interception simulation. These findings highlight the influence of rainfall intensity on the model's reliability in simulating interception loss and provide insights for forest hydrology research in semi-arid regions.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"362 ","pages":"Article 110389"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainfall intensities determine accuracy of canopy interception simulation using the Revised Gash model\",\"authors\":\"Mengliang Ma , Qiang Li , Yaping Wang , Jin Liang , Jiangyao Wang , Jinliang Liu , Mingfang Zhang\",\"doi\":\"10.1016/j.agrformet.2025.110389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rainfall canopy interception plays a crucial role in rainfall redistribution and hydrological processes in forests. While previous studies have often focused on monthly or yearly time scales, the responses of forest canopy interception to different rainfall magnitudes, frequencies and intensities, particularly under changing climate conditions have been less explored. In addition, the performance of canopy interception models that capture the dynamics of rainfall interception under changing climate remains largely unknown. In this study, we conducted field observations across various tree species and used the Revised Gash model to evaluate the canopy interception under different rainfall intensities. Our findings revealed that the observed interception loss of gross precipitation were 26.1 %, 42.1 %, and 41.6 % for <em>Pinus tabuliformis</em> (<em>PT</em>), <em>Quercus wutaishanica</em> (<em>QW</em>), and <em>Betula platyphylla</em> (<em>BP</em>), respectively. The Revised Gash model accurately estimated canopy interception, with percentage errors of 0.4 %, 5.6 %, and 22.3 % for <em>PT, QW</em>, and <em>BP</em>, respectively. Interestingly, the model performed better for <em>PT</em>, especially under light to moderate rain, while its applicability for <em>QW</em> and <em>BP</em> were diminished under moderate to heavy rain. Overall, the Revised Gash model underestimated interception loss across different rainfall intensities, with more pronounced underestimations observed at higher rainfall intensities. Evaporation during and after rainfall contributed significantly to over 85.3 % of interception loss across three tree species. Sensitivity analysis highlighted that parameters including mean rainfall intensity, mean wet canopy evaporation rate, and canopy storage capacity were critical in influencing canopy interception simulation. These findings highlight the influence of rainfall intensity on the model's reliability in simulating interception loss and provide insights for forest hydrology research in semi-arid regions.</div></div>\",\"PeriodicalId\":50839,\"journal\":{\"name\":\"Agricultural and Forest Meteorology\",\"volume\":\"362 \",\"pages\":\"Article 110389\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural and Forest Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168192325000097\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325000097","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Rainfall intensities determine accuracy of canopy interception simulation using the Revised Gash model
Rainfall canopy interception plays a crucial role in rainfall redistribution and hydrological processes in forests. While previous studies have often focused on monthly or yearly time scales, the responses of forest canopy interception to different rainfall magnitudes, frequencies and intensities, particularly under changing climate conditions have been less explored. In addition, the performance of canopy interception models that capture the dynamics of rainfall interception under changing climate remains largely unknown. In this study, we conducted field observations across various tree species and used the Revised Gash model to evaluate the canopy interception under different rainfall intensities. Our findings revealed that the observed interception loss of gross precipitation were 26.1 %, 42.1 %, and 41.6 % for Pinus tabuliformis (PT), Quercus wutaishanica (QW), and Betula platyphylla (BP), respectively. The Revised Gash model accurately estimated canopy interception, with percentage errors of 0.4 %, 5.6 %, and 22.3 % for PT, QW, and BP, respectively. Interestingly, the model performed better for PT, especially under light to moderate rain, while its applicability for QW and BP were diminished under moderate to heavy rain. Overall, the Revised Gash model underestimated interception loss across different rainfall intensities, with more pronounced underestimations observed at higher rainfall intensities. Evaporation during and after rainfall contributed significantly to over 85.3 % of interception loss across three tree species. Sensitivity analysis highlighted that parameters including mean rainfall intensity, mean wet canopy evaporation rate, and canopy storage capacity were critical in influencing canopy interception simulation. These findings highlight the influence of rainfall intensity on the model's reliability in simulating interception loss and provide insights for forest hydrology research in semi-arid regions.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.