流体天线辅助的同步无线信息和电力传输系统

IF 7.1 2区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Liaoshi Zhou;Junteng Yao;Tuo Wu;Ming Jin;Chau Yuen;Fumiyuki Adachi
{"title":"流体天线辅助的同步无线信息和电力传输系统","authors":"Liaoshi Zhou;Junteng Yao;Tuo Wu;Ming Jin;Chau Yuen;Fumiyuki Adachi","doi":"10.1109/TVT.2025.3528949","DOIUrl":null,"url":null,"abstract":"This paper examines a fluid antenna (FA)-assisted simultaneous wireless information and power transfer (SWIPT) system. Unlike traditional SWIPT systems with fixed-position antennas (FPAs), our FA-assisted system enables dynamic reconfiguration of the radio propagation environment by adjusting the positions of FAs. This capability enhances both energy harvesting and communication performance. The system comprises a base station (BS) equipped with multiple FAs that transmit signals to an energy receiver (ER) and an information receiver (IR), both equipped with a single FA. Our objective is to maximize the communication rate between the BS and the IR while satisfying the harvested power requirement of the ER. This involves jointly optimizing the BS's transmit beamforming and the positions of all FAs. To address this complex convex optimization problem, we employ an alternating optimization (AO) approach, decomposing it into three sub-problems and solving them iteratively using first and second-order Taylor expansions. Simulation results validate the effectiveness of our proposed FA-assisted SWIPT system, demonstrating significant performance improvements over traditional FPA-based systems.","PeriodicalId":13421,"journal":{"name":"IEEE Transactions on Vehicular Technology","volume":"74 5","pages":"8285-8290"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid Antenna-Assisted Simultaneous Wireless Information and Power Transfer Systems\",\"authors\":\"Liaoshi Zhou;Junteng Yao;Tuo Wu;Ming Jin;Chau Yuen;Fumiyuki Adachi\",\"doi\":\"10.1109/TVT.2025.3528949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines a fluid antenna (FA)-assisted simultaneous wireless information and power transfer (SWIPT) system. Unlike traditional SWIPT systems with fixed-position antennas (FPAs), our FA-assisted system enables dynamic reconfiguration of the radio propagation environment by adjusting the positions of FAs. This capability enhances both energy harvesting and communication performance. The system comprises a base station (BS) equipped with multiple FAs that transmit signals to an energy receiver (ER) and an information receiver (IR), both equipped with a single FA. Our objective is to maximize the communication rate between the BS and the IR while satisfying the harvested power requirement of the ER. This involves jointly optimizing the BS's transmit beamforming and the positions of all FAs. To address this complex convex optimization problem, we employ an alternating optimization (AO) approach, decomposing it into three sub-problems and solving them iteratively using first and second-order Taylor expansions. Simulation results validate the effectiveness of our proposed FA-assisted SWIPT system, demonstrating significant performance improvements over traditional FPA-based systems.\",\"PeriodicalId\":13421,\"journal\":{\"name\":\"IEEE Transactions on Vehicular Technology\",\"volume\":\"74 5\",\"pages\":\"8285-8290\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Vehicular Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10840319/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Vehicular Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10840319/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种流体天线(FA)辅助的同步无线信息与电力传输(SWIPT)系统。与传统的带有固定位置天线(fpa)的SWIPT系统不同,我们的fa辅助系统可以通过调整fa的位置来动态重新配置无线电传播环境。这种能力增强了能量收集和通信性能。该系统包括配备多个FA的基站(BS),这些FA将信号发送到配备单个FA的能量接收器(ER)和信息接收器(IR)。我们的目标是最大化BS和IR之间的通信速率,同时满足ER的收获功率需求。这涉及到联合优化BS的发射波束形成和所有fa的位置。为了解决这个复杂的凸优化问题,我们采用交替优化(AO)方法,将其分解为三个子问题,并使用一阶和二阶泰勒展开迭代求解它们。仿真结果验证了我们提出的fa辅助SWIPT系统的有效性,显示出比传统的基于fpa的系统有显着的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluid Antenna-Assisted Simultaneous Wireless Information and Power Transfer Systems
This paper examines a fluid antenna (FA)-assisted simultaneous wireless information and power transfer (SWIPT) system. Unlike traditional SWIPT systems with fixed-position antennas (FPAs), our FA-assisted system enables dynamic reconfiguration of the radio propagation environment by adjusting the positions of FAs. This capability enhances both energy harvesting and communication performance. The system comprises a base station (BS) equipped with multiple FAs that transmit signals to an energy receiver (ER) and an information receiver (IR), both equipped with a single FA. Our objective is to maximize the communication rate between the BS and the IR while satisfying the harvested power requirement of the ER. This involves jointly optimizing the BS's transmit beamforming and the positions of all FAs. To address this complex convex optimization problem, we employ an alternating optimization (AO) approach, decomposing it into three sub-problems and solving them iteratively using first and second-order Taylor expansions. Simulation results validate the effectiveness of our proposed FA-assisted SWIPT system, demonstrating significant performance improvements over traditional FPA-based systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
8.80%
发文量
1245
审稿时长
6.3 months
期刊介绍: The scope of the Transactions is threefold (which was approved by the IEEE Periodicals Committee in 1967) and is published on the journal website as follows: Communications: The use of mobile radio on land, sea, and air, including cellular radio, two-way radio, and one-way radio, with applications to dispatch and control vehicles, mobile radiotelephone, radio paging, and status monitoring and reporting. Related areas include spectrum usage, component radio equipment such as cavities and antennas, compute control for radio systems, digital modulation and transmission techniques, mobile radio circuit design, radio propagation for vehicular communications, effects of ignition noise and radio frequency interference, and consideration of the vehicle as part of the radio operating environment. Transportation Systems: The use of electronic technology for the control of ground transportation systems including, but not limited to, traffic aid systems; traffic control systems; automatic vehicle identification, location, and monitoring systems; automated transport systems, with single and multiple vehicle control; and moving walkways or people-movers. Vehicular Electronics: The use of electronic or electrical components and systems for control, propulsion, or auxiliary functions, including but not limited to, electronic controls for engineer, drive train, convenience, safety, and other vehicle systems; sensors, actuators, and microprocessors for onboard use; electronic fuel control systems; vehicle electrical components and systems collision avoidance systems; electromagnetic compatibility in the vehicle environment; and electric vehicles and controls.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信