{"title":"利用深度神经网络对尖顶-灾难自动聚焦光束进行高效光学捕获力调整","authors":"Xiaofang Lu, Peiyu Zhang, Haixia Wu, Jiahao Yu, Ping Chen, Bingsuo Zou, Peilong Hong, Yu-Xuan Ren, Yi Liang","doi":"10.1063/5.0241264","DOIUrl":null,"url":null,"abstract":"Structured light adjusts optical trapping forces through flexible structure design. However, it is challenging to evaluate optical forces on microscopic particles in structured light due to high computational hardware requirements, prolonged computation times, and data inefficiencies associated with solving optical trapping forces using generalized Lorenz–Mie theory. We propose the use of deep neural networks for predicting and tuning the optical trapping force of cusp-catastrophe autofocusing beams on Mie particles. Inputs include beam's structural parameters, laser power, and the size of captured particle, while the output is the optical trapping force. Following iterative training, the neural network achieved a mean square error of 1.5×10−5. Evaluation using 150 sets of test data revealed that 95.3% of the predictions had a relative error of less than 1.8%, indicating a high prediction accuracy. In contrast to traditional computational methods, the neural network model demonstrates a remarkable efficiency improvement—104 times faster in optimizing beams for optical trapping. This advancement demonstrates the advantage of deep learning neural networks for the application of structured light including autofocusing beams in optical tweezers.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"7 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient optical trapping force tuning for cusp-catastrophe autofocusing beams using deep neural networks\",\"authors\":\"Xiaofang Lu, Peiyu Zhang, Haixia Wu, Jiahao Yu, Ping Chen, Bingsuo Zou, Peilong Hong, Yu-Xuan Ren, Yi Liang\",\"doi\":\"10.1063/5.0241264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structured light adjusts optical trapping forces through flexible structure design. However, it is challenging to evaluate optical forces on microscopic particles in structured light due to high computational hardware requirements, prolonged computation times, and data inefficiencies associated with solving optical trapping forces using generalized Lorenz–Mie theory. We propose the use of deep neural networks for predicting and tuning the optical trapping force of cusp-catastrophe autofocusing beams on Mie particles. Inputs include beam's structural parameters, laser power, and the size of captured particle, while the output is the optical trapping force. Following iterative training, the neural network achieved a mean square error of 1.5×10−5. Evaluation using 150 sets of test data revealed that 95.3% of the predictions had a relative error of less than 1.8%, indicating a high prediction accuracy. In contrast to traditional computational methods, the neural network model demonstrates a remarkable efficiency improvement—104 times faster in optimizing beams for optical trapping. This advancement demonstrates the advantage of deep learning neural networks for the application of structured light including autofocusing beams in optical tweezers.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0241264\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0241264","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Efficient optical trapping force tuning for cusp-catastrophe autofocusing beams using deep neural networks
Structured light adjusts optical trapping forces through flexible structure design. However, it is challenging to evaluate optical forces on microscopic particles in structured light due to high computational hardware requirements, prolonged computation times, and data inefficiencies associated with solving optical trapping forces using generalized Lorenz–Mie theory. We propose the use of deep neural networks for predicting and tuning the optical trapping force of cusp-catastrophe autofocusing beams on Mie particles. Inputs include beam's structural parameters, laser power, and the size of captured particle, while the output is the optical trapping force. Following iterative training, the neural network achieved a mean square error of 1.5×10−5. Evaluation using 150 sets of test data revealed that 95.3% of the predictions had a relative error of less than 1.8%, indicating a high prediction accuracy. In contrast to traditional computational methods, the neural network model demonstrates a remarkable efficiency improvement—104 times faster in optimizing beams for optical trapping. This advancement demonstrates the advantage of deep learning neural networks for the application of structured light including autofocusing beams in optical tweezers.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.