组织工程中用于刺激和再生的电活性生物材料。

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Jinyoung Park, Gulsah Erel Akbaba, Nidhi Sharma, Ritopa Das, Tra Vinikoor, Yang Liu, Duong Quang Le, Kishan Angadi, Thanh Duc Nguyen
{"title":"组织工程中用于刺激和再生的电活性生物材料。","authors":"Jinyoung Park,&nbsp;Gulsah Erel Akbaba,&nbsp;Nidhi Sharma,&nbsp;Ritopa Das,&nbsp;Tra Vinikoor,&nbsp;Yang Liu,&nbsp;Duong Quang Le,&nbsp;Kishan Angadi,&nbsp;Thanh Duc Nguyen","doi":"10.1002/jbm.a.37871","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the human body, bioelectric cues are crucial for tissue stimulation and regeneration. Electrical stimulation (ES) significantly enhances the regeneration of nerves, bones, cardiovascular tissues, and wounds. However, the use of conventional devices with stimulating metal electrodes is invasive and requires external batteries. Consequently, electrically active materials with excellent biocompatibility have attracted attention for their applications in stimulation and regeneration in tissue engineering. To fully exploit the potential of these materials, biocompatibility, operating mechanisms, electrical properties, and even biodegradability should be carefully considered. In this review, we categorize various electrically active biomaterials based on their mechanisms for generating electrical cues, such as piezoelectric effect, triboelectric effect, and others. We also summarize the key material properties, including electrical characteristics and biodegradability, and describe their applications in tissue stimulation and regeneration for nerves, musculoskeletal tissues, and cardiovascular tissues. The electrically active biomaterials hold great potential for advancing the field of tissue engineering and their demonstrated success underscores the importance of continued research in this field.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrically Active Biomaterials for Stimulation and Regeneration in Tissue Engineering\",\"authors\":\"Jinyoung Park,&nbsp;Gulsah Erel Akbaba,&nbsp;Nidhi Sharma,&nbsp;Ritopa Das,&nbsp;Tra Vinikoor,&nbsp;Yang Liu,&nbsp;Duong Quang Le,&nbsp;Kishan Angadi,&nbsp;Thanh Duc Nguyen\",\"doi\":\"10.1002/jbm.a.37871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In the human body, bioelectric cues are crucial for tissue stimulation and regeneration. Electrical stimulation (ES) significantly enhances the regeneration of nerves, bones, cardiovascular tissues, and wounds. However, the use of conventional devices with stimulating metal electrodes is invasive and requires external batteries. Consequently, electrically active materials with excellent biocompatibility have attracted attention for their applications in stimulation and regeneration in tissue engineering. To fully exploit the potential of these materials, biocompatibility, operating mechanisms, electrical properties, and even biodegradability should be carefully considered. In this review, we categorize various electrically active biomaterials based on their mechanisms for generating electrical cues, such as piezoelectric effect, triboelectric effect, and others. We also summarize the key material properties, including electrical characteristics and biodegradability, and describe their applications in tissue stimulation and regeneration for nerves, musculoskeletal tissues, and cardiovascular tissues. The electrically active biomaterials hold great potential for advancing the field of tissue engineering and their demonstrated success underscores the importance of continued research in this field.</p>\\n </div>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37871\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37871","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在人体中,生物电信号对组织刺激和再生至关重要。电刺激(ES)能显著促进神经、骨骼、心血管组织和伤口的再生。然而,使用带有刺激金属电极的传统装置是侵入性的,并且需要外部电池。因此,具有良好生物相容性的电活性材料在组织工程刺激和再生方面的应用越来越受到人们的关注。为了充分开发这些材料的潜力,应该仔细考虑生物相容性、操作机制、电性能甚至生物降解性。在这篇综述中,我们根据其产生电线索的机制对各种电活性生物材料进行了分类,如压电效应、摩擦电效应等。我们还总结了材料的关键特性,包括电特性和生物降解性,并描述了它们在神经、肌肉骨骼组织和心血管组织的组织刺激和再生中的应用。电活性生物材料在推进组织工程领域具有巨大的潜力,它们的成功证明了在这一领域继续研究的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrically Active Biomaterials for Stimulation and Regeneration in Tissue Engineering

In the human body, bioelectric cues are crucial for tissue stimulation and regeneration. Electrical stimulation (ES) significantly enhances the regeneration of nerves, bones, cardiovascular tissues, and wounds. However, the use of conventional devices with stimulating metal electrodes is invasive and requires external batteries. Consequently, electrically active materials with excellent biocompatibility have attracted attention for their applications in stimulation and regeneration in tissue engineering. To fully exploit the potential of these materials, biocompatibility, operating mechanisms, electrical properties, and even biodegradability should be carefully considered. In this review, we categorize various electrically active biomaterials based on their mechanisms for generating electrical cues, such as piezoelectric effect, triboelectric effect, and others. We also summarize the key material properties, including electrical characteristics and biodegradability, and describe their applications in tissue stimulation and regeneration for nerves, musculoskeletal tissues, and cardiovascular tissues. The electrically active biomaterials hold great potential for advancing the field of tissue engineering and their demonstrated success underscores the importance of continued research in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信