Dianqi Zhang, Yang Cao, Biao Dai, Teng Zhang, Xing Jin, Qingyue Lan, Chaoying Qian, Yumin He, Yi Jiang
{"title":"学龄儿童肺炎支原体感染呼吸道病毒组成的变化。","authors":"Dianqi Zhang, Yang Cao, Biao Dai, Teng Zhang, Xing Jin, Qingyue Lan, Chaoying Qian, Yumin He, Yi Jiang","doi":"10.1186/s12985-025-02626-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mycoplasma pneumoniae (MP) is a common pathogen for respiratory infections in children. Previous studies have reported respiratory tract microbial disturbances associated with MP infection (MPI); however, since the COVID-19 pandemic, respiratory virome data in school-aged children with MPI remains insufficient. This study aims to explore the changes in the respiratory virome caused by MPI after the COVID-19 pandemic to enrich local epidemiological data.</p><p><strong>Methods: </strong>Clinical samples from 70 children with MPI (70 throat swab samples and 70 bronchoalveolar lavage fluid (BALF) samples) and 78 healthy controls (78 throat swab samples) were analyzed using viral metagenomics. Virus reads were calculated and normalized using MEGAN.6, followed by statistical analysis.</p><p><strong>Results: </strong>Principal Coordinate Analysis (PCoA) showed that viral community diversity is a significant difference between disease cohorts and healthy controls. After MPI, the number of virus species in the upper respiratory tract (URT) increased obviously, and the abundance of families Poxviridae, Retroviridae, and Iridoviridae, which infect vertebrates, rose evidently, particularly the species BeAn 58,085 virus (BAV). Meanwhile, phage alterations in the disease cohorts were predominantly characterized by increased Myoviridae and Ackermannviridae families and decreased Siphoviridae and Salasmaviridae families (p < 0.01). In addition, some new viruses, such as rhinovirus, respirovirus, dependoparvovirus, and a novel gemykibvirus, were also detected in the BALF of the disease cohort.</p><p><strong>Conclusions: </strong>This cross-sectional research highlighted the respiratory virome characteristics of school-aged children with MPI after the COVID-19 outbreak and provided important epidemiological information. Further investigation into the impact of various microorganisms on diseases will aid in developing clinical treatment strategies.</p>","PeriodicalId":23616,"journal":{"name":"Virology Journal","volume":"22 1","pages":"10"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731546/pdf/","citationCount":"0","resultStr":"{\"title\":\"The virome composition of respiratory tract changes in school-aged children with Mycoplasma pneumoniae infection.\",\"authors\":\"Dianqi Zhang, Yang Cao, Biao Dai, Teng Zhang, Xing Jin, Qingyue Lan, Chaoying Qian, Yumin He, Yi Jiang\",\"doi\":\"10.1186/s12985-025-02626-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mycoplasma pneumoniae (MP) is a common pathogen for respiratory infections in children. Previous studies have reported respiratory tract microbial disturbances associated with MP infection (MPI); however, since the COVID-19 pandemic, respiratory virome data in school-aged children with MPI remains insufficient. This study aims to explore the changes in the respiratory virome caused by MPI after the COVID-19 pandemic to enrich local epidemiological data.</p><p><strong>Methods: </strong>Clinical samples from 70 children with MPI (70 throat swab samples and 70 bronchoalveolar lavage fluid (BALF) samples) and 78 healthy controls (78 throat swab samples) were analyzed using viral metagenomics. Virus reads were calculated and normalized using MEGAN.6, followed by statistical analysis.</p><p><strong>Results: </strong>Principal Coordinate Analysis (PCoA) showed that viral community diversity is a significant difference between disease cohorts and healthy controls. After MPI, the number of virus species in the upper respiratory tract (URT) increased obviously, and the abundance of families Poxviridae, Retroviridae, and Iridoviridae, which infect vertebrates, rose evidently, particularly the species BeAn 58,085 virus (BAV). Meanwhile, phage alterations in the disease cohorts were predominantly characterized by increased Myoviridae and Ackermannviridae families and decreased Siphoviridae and Salasmaviridae families (p < 0.01). In addition, some new viruses, such as rhinovirus, respirovirus, dependoparvovirus, and a novel gemykibvirus, were also detected in the BALF of the disease cohort.</p><p><strong>Conclusions: </strong>This cross-sectional research highlighted the respiratory virome characteristics of school-aged children with MPI after the COVID-19 outbreak and provided important epidemiological information. Further investigation into the impact of various microorganisms on diseases will aid in developing clinical treatment strategies.</p>\",\"PeriodicalId\":23616,\"journal\":{\"name\":\"Virology Journal\",\"volume\":\"22 1\",\"pages\":\"10\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731546/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virology Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12985-025-02626-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12985-025-02626-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
The virome composition of respiratory tract changes in school-aged children with Mycoplasma pneumoniae infection.
Background: Mycoplasma pneumoniae (MP) is a common pathogen for respiratory infections in children. Previous studies have reported respiratory tract microbial disturbances associated with MP infection (MPI); however, since the COVID-19 pandemic, respiratory virome data in school-aged children with MPI remains insufficient. This study aims to explore the changes in the respiratory virome caused by MPI after the COVID-19 pandemic to enrich local epidemiological data.
Methods: Clinical samples from 70 children with MPI (70 throat swab samples and 70 bronchoalveolar lavage fluid (BALF) samples) and 78 healthy controls (78 throat swab samples) were analyzed using viral metagenomics. Virus reads were calculated and normalized using MEGAN.6, followed by statistical analysis.
Results: Principal Coordinate Analysis (PCoA) showed that viral community diversity is a significant difference between disease cohorts and healthy controls. After MPI, the number of virus species in the upper respiratory tract (URT) increased obviously, and the abundance of families Poxviridae, Retroviridae, and Iridoviridae, which infect vertebrates, rose evidently, particularly the species BeAn 58,085 virus (BAV). Meanwhile, phage alterations in the disease cohorts were predominantly characterized by increased Myoviridae and Ackermannviridae families and decreased Siphoviridae and Salasmaviridae families (p < 0.01). In addition, some new viruses, such as rhinovirus, respirovirus, dependoparvovirus, and a novel gemykibvirus, were also detected in the BALF of the disease cohort.
Conclusions: This cross-sectional research highlighted the respiratory virome characteristics of school-aged children with MPI after the COVID-19 outbreak and provided important epidemiological information. Further investigation into the impact of various microorganisms on diseases will aid in developing clinical treatment strategies.
期刊介绍:
Virology Journal is an open access, peer reviewed journal that considers articles on all aspects of virology, including research on the viruses of animals, plants and microbes. The journal welcomes basic research as well as pre-clinical and clinical studies of novel diagnostic tools, vaccines and anti-viral therapies.
The Editorial policy of Virology Journal is to publish all research which is assessed by peer reviewers to be a coherent and sound addition to the scientific literature, and puts less emphasis on interest levels or perceived impact.