Victor Dyomin, Igor Polovtsev, Alexandra Davydova, Nikolai Kirillov
{"title":"浮游生物水下数字全息摄影的光谱学方面。","authors":"Victor Dyomin, Igor Polovtsev, Alexandra Davydova, Nikolai Kirillov","doi":"10.1038/s41598-025-85790-w","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring the parameters and behavior of plankton makes it possible to assess the state of the aquatic ecosystem and detect the beginning of an environmental disaster at an early stage. In this respect, the most informative method for the in situ plankton study is underwater digital holography. This method allows obtaining information on the size, shape, and location of plankton individuals, as well as performing their classification and biotesting according to their behavioral responses using a submersible holographic camera non-invasively, in real time, and in the automatic mode. The monitoring series of the ecosystem functions can be used to assess the state of the ecosystem. One of them is the time series of the concentration of individuals of various plankton taxa in a certain volume. There are characteristic rhythms in the ecosystem function caused by both plankton biorhythms and changes in habitat parameters, as well as their synchronization, whereas a change in this rhythm may serve as an alarm signal for the ecosystem deprivation. By constructing the analogies based on the spectroscopy of atoms and molecules the paper shows the bioindication capabilities of the Fourier spectra of the plankton ecosystem function, built during monitoring measurements using a submersible digital holographic camera. The spectroscopic study of plankton allows determining the pollution in the plankton habitat at early stages. The in situ experimental data suggest that the order and chaos of plankton biocenosis are reflected in the structure of the spectral lines of the ecosystem functions associated with plankton. Various self-oscillatory processes in the biocenosis that regulate the plankton number and rhythm form the basis for plankton spectroscopy, which may be used for bioindication monitoring.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"1884"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730315/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spectroscopic aspects of underwater digital holography of plankton.\",\"authors\":\"Victor Dyomin, Igor Polovtsev, Alexandra Davydova, Nikolai Kirillov\",\"doi\":\"10.1038/s41598-025-85790-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monitoring the parameters and behavior of plankton makes it possible to assess the state of the aquatic ecosystem and detect the beginning of an environmental disaster at an early stage. In this respect, the most informative method for the in situ plankton study is underwater digital holography. This method allows obtaining information on the size, shape, and location of plankton individuals, as well as performing their classification and biotesting according to their behavioral responses using a submersible holographic camera non-invasively, in real time, and in the automatic mode. The monitoring series of the ecosystem functions can be used to assess the state of the ecosystem. One of them is the time series of the concentration of individuals of various plankton taxa in a certain volume. There are characteristic rhythms in the ecosystem function caused by both plankton biorhythms and changes in habitat parameters, as well as their synchronization, whereas a change in this rhythm may serve as an alarm signal for the ecosystem deprivation. By constructing the analogies based on the spectroscopy of atoms and molecules the paper shows the bioindication capabilities of the Fourier spectra of the plankton ecosystem function, built during monitoring measurements using a submersible digital holographic camera. The spectroscopic study of plankton allows determining the pollution in the plankton habitat at early stages. The in situ experimental data suggest that the order and chaos of plankton biocenosis are reflected in the structure of the spectral lines of the ecosystem functions associated with plankton. Various self-oscillatory processes in the biocenosis that regulate the plankton number and rhythm form the basis for plankton spectroscopy, which may be used for bioindication monitoring.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"1884\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730315/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-85790-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85790-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Spectroscopic aspects of underwater digital holography of plankton.
Monitoring the parameters and behavior of plankton makes it possible to assess the state of the aquatic ecosystem and detect the beginning of an environmental disaster at an early stage. In this respect, the most informative method for the in situ plankton study is underwater digital holography. This method allows obtaining information on the size, shape, and location of plankton individuals, as well as performing their classification and biotesting according to their behavioral responses using a submersible holographic camera non-invasively, in real time, and in the automatic mode. The monitoring series of the ecosystem functions can be used to assess the state of the ecosystem. One of them is the time series of the concentration of individuals of various plankton taxa in a certain volume. There are characteristic rhythms in the ecosystem function caused by both plankton biorhythms and changes in habitat parameters, as well as their synchronization, whereas a change in this rhythm may serve as an alarm signal for the ecosystem deprivation. By constructing the analogies based on the spectroscopy of atoms and molecules the paper shows the bioindication capabilities of the Fourier spectra of the plankton ecosystem function, built during monitoring measurements using a submersible digital holographic camera. The spectroscopic study of plankton allows determining the pollution in the plankton habitat at early stages. The in situ experimental data suggest that the order and chaos of plankton biocenosis are reflected in the structure of the spectral lines of the ecosystem functions associated with plankton. Various self-oscillatory processes in the biocenosis that regulate the plankton number and rhythm form the basis for plankton spectroscopy, which may be used for bioindication monitoring.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.