Dmitry S Bogolyubov, Ludmila V Chistyakova, Alexandra O Travina, Maksim I Sulatsky, Andrew V Goodkov
{"title":"古变形虫原生动物 Pelomyxa belevskii(变形虫纲、古变形虫目、天牛目)中新出现的含核素的细胞质体。","authors":"Dmitry S Bogolyubov, Ludmila V Chistyakova, Alexandra O Travina, Maksim I Sulatsky, Andrew V Goodkov","doi":"10.1007/s00709-024-02017-x","DOIUrl":null,"url":null,"abstract":"<p><p>The representatives of the archamoebian genus Pelomyxa are amoeboid anaerobic protists that inhabit fresh-water anoxic sediments, and most of them are usually multinucleate. The cytoplasm of these unicellular organisms is highly complicated and contains numerous vacuoles of different types, as well as a wide range of prokaryotic endocytobionts, agglomerations of glycogen, lipids, etc. Among the great variety of cytoplasmic structures in P. belevskii, we identified novel organelles termed Cytoplasmic Nucleolin-Rich Bodies (CNRBs) due to their enrichment in nucleolin, a nuclear/nucleolar protein. The P. belevskii CNRBs differ significantly from known cytoplasmic nucleolin-related organelles encountered in some other eukaryotic cells, but their biological significance remains elusive. The work also provides the first description of the nuclear organization of P. belevskii. The nucleolar apparatus of P. belevskii contains little nucleolin, as determined by quantitative electron microscopic data, suggesting that it is inactive despite its morphological complexity. The presence of CNRBs in Pelomyxa is discussed in the context of the specific habitat conditions and biology of these unicellular eukaryotes.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New nucleolin-containing cytoplasmic bodies in an archamoebian protist Pelomyxa belevskii (Amoebozoa, Archamoebae, Pelobiontida).\",\"authors\":\"Dmitry S Bogolyubov, Ludmila V Chistyakova, Alexandra O Travina, Maksim I Sulatsky, Andrew V Goodkov\",\"doi\":\"10.1007/s00709-024-02017-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The representatives of the archamoebian genus Pelomyxa are amoeboid anaerobic protists that inhabit fresh-water anoxic sediments, and most of them are usually multinucleate. The cytoplasm of these unicellular organisms is highly complicated and contains numerous vacuoles of different types, as well as a wide range of prokaryotic endocytobionts, agglomerations of glycogen, lipids, etc. Among the great variety of cytoplasmic structures in P. belevskii, we identified novel organelles termed Cytoplasmic Nucleolin-Rich Bodies (CNRBs) due to their enrichment in nucleolin, a nuclear/nucleolar protein. The P. belevskii CNRBs differ significantly from known cytoplasmic nucleolin-related organelles encountered in some other eukaryotic cells, but their biological significance remains elusive. The work also provides the first description of the nuclear organization of P. belevskii. The nucleolar apparatus of P. belevskii contains little nucleolin, as determined by quantitative electron microscopic data, suggesting that it is inactive despite its morphological complexity. The presence of CNRBs in Pelomyxa is discussed in the context of the specific habitat conditions and biology of these unicellular eukaryotes.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-024-02017-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-02017-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
New nucleolin-containing cytoplasmic bodies in an archamoebian protist Pelomyxa belevskii (Amoebozoa, Archamoebae, Pelobiontida).
The representatives of the archamoebian genus Pelomyxa are amoeboid anaerobic protists that inhabit fresh-water anoxic sediments, and most of them are usually multinucleate. The cytoplasm of these unicellular organisms is highly complicated and contains numerous vacuoles of different types, as well as a wide range of prokaryotic endocytobionts, agglomerations of glycogen, lipids, etc. Among the great variety of cytoplasmic structures in P. belevskii, we identified novel organelles termed Cytoplasmic Nucleolin-Rich Bodies (CNRBs) due to their enrichment in nucleolin, a nuclear/nucleolar protein. The P. belevskii CNRBs differ significantly from known cytoplasmic nucleolin-related organelles encountered in some other eukaryotic cells, but their biological significance remains elusive. The work also provides the first description of the nuclear organization of P. belevskii. The nucleolar apparatus of P. belevskii contains little nucleolin, as determined by quantitative electron microscopic data, suggesting that it is inactive despite its morphological complexity. The presence of CNRBs in Pelomyxa is discussed in the context of the specific habitat conditions and biology of these unicellular eukaryotes.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".