Wenying Wei, Zesheng Liu, Xuejuan Pan, Tingyue Yang, Caiting An, Yuanhui Wang, Long Li, Weibiao Liao, Chunlei Wang
{"title":"活性氧对果实成熟和采后果实品质的影响。","authors":"Wenying Wei, Zesheng Liu, Xuejuan Pan, Tingyue Yang, Caiting An, Yuanhui Wang, Long Li, Weibiao Liao, Chunlei Wang","doi":"10.1016/j.plantsci.2025.112391","DOIUrl":null,"url":null,"abstract":"<div><div>Reactive oxygen species (ROS) serve as important signaling molecule, involved in numerous biological processes, particularly in the physiological changes associated with fruit ripening and postharvest handing. This review explores ROS key role in plant fruit ripening and postharvest quality. The mechanism of ROS production and degradation in maintaining ROS homeostasis are analyzed in detail. Fruit ripening is a complex and highly coordinated process involving physiological and biochemical changes. Studies have observed that the content of ROS, mainly hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), dynamically changes in various types of fruits during ripening. Furthermore, ROS have significant effects on fruit softening, color change, and other ripening processes. In addition, in the postharvest stage, the abnormal accumulation of ROS isclosely related to the decline in fruit quality and the occurrence of decay browning, which seriously affects the market value and shelf life of fruit. Overall, this review demonstrates the crucial role of ROS in regulating the ripening process and postharvest quality of fruit.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"352 ","pages":"Article 112391"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of reactive oxygen species on fruit ripening and postharvest fruit quality\",\"authors\":\"Wenying Wei, Zesheng Liu, Xuejuan Pan, Tingyue Yang, Caiting An, Yuanhui Wang, Long Li, Weibiao Liao, Chunlei Wang\",\"doi\":\"10.1016/j.plantsci.2025.112391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reactive oxygen species (ROS) serve as important signaling molecule, involved in numerous biological processes, particularly in the physiological changes associated with fruit ripening and postharvest handing. This review explores ROS key role in plant fruit ripening and postharvest quality. The mechanism of ROS production and degradation in maintaining ROS homeostasis are analyzed in detail. Fruit ripening is a complex and highly coordinated process involving physiological and biochemical changes. Studies have observed that the content of ROS, mainly hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), dynamically changes in various types of fruits during ripening. Furthermore, ROS have significant effects on fruit softening, color change, and other ripening processes. In addition, in the postharvest stage, the abnormal accumulation of ROS isclosely related to the decline in fruit quality and the occurrence of decay browning, which seriously affects the market value and shelf life of fruit. Overall, this review demonstrates the crucial role of ROS in regulating the ripening process and postharvest quality of fruit.</div></div>\",\"PeriodicalId\":20273,\"journal\":{\"name\":\"Plant Science\",\"volume\":\"352 \",\"pages\":\"Article 112391\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168945225000081\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225000081","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effects of reactive oxygen species on fruit ripening and postharvest fruit quality
Reactive oxygen species (ROS) serve as important signaling molecule, involved in numerous biological processes, particularly in the physiological changes associated with fruit ripening and postharvest handing. This review explores ROS key role in plant fruit ripening and postharvest quality. The mechanism of ROS production and degradation in maintaining ROS homeostasis are analyzed in detail. Fruit ripening is a complex and highly coordinated process involving physiological and biochemical changes. Studies have observed that the content of ROS, mainly hydrogen peroxide (H2O2), dynamically changes in various types of fruits during ripening. Furthermore, ROS have significant effects on fruit softening, color change, and other ripening processes. In addition, in the postharvest stage, the abnormal accumulation of ROS isclosely related to the decline in fruit quality and the occurrence of decay browning, which seriously affects the market value and shelf life of fruit. Overall, this review demonstrates the crucial role of ROS in regulating the ripening process and postharvest quality of fruit.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.