{"title":"智能系统中基于IABLN算法的无线通信自动系统调制模式识别方法。","authors":"Ting Xie, Xing Han","doi":"10.1371/journal.pone.0317355","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition. To address this issue, a signal modulation recognition method based on a two-way interactive temporal attention network algorithm has been developed. A two-way interactive temporal network is designed on the basis of the long and short-term memory network with the objective of enhancing the contextual connection of the temporal network. The output of the temporal network is attentively weighted using the soft attention mechanism. The proposed algorithm exhibited enhanced overall, average, and maximum recognition rates at varying signal-to-noise ratios, with an increase of 10.34%, 8.33%, and 3.33%, respectively, in comparison to other algorithms within the Radio Machine Learning (RML) 2016.10b dataset. Furthermore, the modulated signal recognition accuracy was as high as 92.84%, with an average increase in the Kappa coefficient of 12.28%. The Kappa coefficient in the Communication Signal Processing Benchmark for Machine Learning (CSPB.ML2018) 2018 dataset was 0.62, representing an average increase of 10.32% over other algorithms. The results demonstrate that the proposed recognition method can enhance the network's accuracy in recognizing modulated signals. Moreover, it has potential applications in modulation pattern recognition in automatic systems for wireless communications.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 1","pages":"e0317355"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729949/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modulation pattern recognition method of wireless communication automatic system based on IABLN algorithm in intelligent system.\",\"authors\":\"Ting Xie, Xing Han\",\"doi\":\"10.1371/journal.pone.0317355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition. To address this issue, a signal modulation recognition method based on a two-way interactive temporal attention network algorithm has been developed. A two-way interactive temporal network is designed on the basis of the long and short-term memory network with the objective of enhancing the contextual connection of the temporal network. The output of the temporal network is attentively weighted using the soft attention mechanism. The proposed algorithm exhibited enhanced overall, average, and maximum recognition rates at varying signal-to-noise ratios, with an increase of 10.34%, 8.33%, and 3.33%, respectively, in comparison to other algorithms within the Radio Machine Learning (RML) 2016.10b dataset. Furthermore, the modulated signal recognition accuracy was as high as 92.84%, with an average increase in the Kappa coefficient of 12.28%. The Kappa coefficient in the Communication Signal Processing Benchmark for Machine Learning (CSPB.ML2018) 2018 dataset was 0.62, representing an average increase of 10.32% over other algorithms. The results demonstrate that the proposed recognition method can enhance the network's accuracy in recognizing modulated signals. Moreover, it has potential applications in modulation pattern recognition in automatic systems for wireless communications.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 1\",\"pages\":\"e0317355\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729949/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0317355\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0317355","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Modulation pattern recognition method of wireless communication automatic system based on IABLN algorithm in intelligent system.
The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition. To address this issue, a signal modulation recognition method based on a two-way interactive temporal attention network algorithm has been developed. A two-way interactive temporal network is designed on the basis of the long and short-term memory network with the objective of enhancing the contextual connection of the temporal network. The output of the temporal network is attentively weighted using the soft attention mechanism. The proposed algorithm exhibited enhanced overall, average, and maximum recognition rates at varying signal-to-noise ratios, with an increase of 10.34%, 8.33%, and 3.33%, respectively, in comparison to other algorithms within the Radio Machine Learning (RML) 2016.10b dataset. Furthermore, the modulated signal recognition accuracy was as high as 92.84%, with an average increase in the Kappa coefficient of 12.28%. The Kappa coefficient in the Communication Signal Processing Benchmark for Machine Learning (CSPB.ML2018) 2018 dataset was 0.62, representing an average increase of 10.32% over other algorithms. The results demonstrate that the proposed recognition method can enhance the network's accuracy in recognizing modulated signals. Moreover, it has potential applications in modulation pattern recognition in automatic systems for wireless communications.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage