革新心力衰竭治疗:利用IVT mRNA和融合蛋白技术延长rhBNP半衰期。

IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Pharmaceutical Research Pub Date : 2025-01-01 Epub Date: 2025-01-13 DOI:10.1007/s11095-024-03807-x
Yingyu Guo, Tianhan Sun, Mengyao Li, Ziwei Chen, Ye Liu, Xuanmei Luo, Yuan Chen, Yayu Li, Lu Kuai, Xue Yu, Lihui Zou
{"title":"革新心力衰竭治疗:利用IVT mRNA和融合蛋白技术延长rhBNP半衰期。","authors":"Yingyu Guo, Tianhan Sun, Mengyao Li, Ziwei Chen, Ye Liu, Xuanmei Luo, Yuan Chen, Yayu Li, Lu Kuai, Xue Yu, Lihui Zou","doi":"10.1007/s11095-024-03807-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Recombinant human B-type natriuretic peptide (rhBNP) has been extensively proven to be an effective mean of heart failure (HF) therapy, but its clinical application is limited by its very short half-life. This study aims to combine in vitro transcribed mRNA (IVT mRNA) and fusion protein technology to develop a rhBNP-Fc mRNA drug with long half-life, high efficiency and few side effects to treat HF.</p><p><strong>Methods: </strong>The rhBNP-Fc fusion mRNA with IgG4-Fc sequence was produced by IVT technology. rhBNP-Fc mRNA was transfected into HEK293T cells to examine the expression in vitro. rhBNP-Fc mRNA encapsulated in LNP was injected into normal mice to detect the translation efficiency, half-life and negative effects in vivo. Finally, it was injected into doxorubicin-induced HF mice to screen the cardiac protective effect.</p><p><strong>Results: </strong>The rhBNP-Fc fusion mRNA extended the half-life of rhBNP, showing sustained expression in cell line for at least one day. rhBNP-Fc mRNA translation showed dose-dependent levels, and was still detectable 5 d after injection in vivo. In the HF mouse model, a single administration of rhBNP-Fc mRNA-LNP improved cardiac function, including improving heart ejection and reducing HF biomarkers expression. Additionally, rhBNP-Fc mRNA-LNP treatment mitigated myocardial damage, normalized cardiomyocyte structure, and reduced the levels of pro-inflammatory cytokines.</p><p><strong>Conclusion: </strong>The rhBNP-Fc mRNA has the potential to serve as an alternative to traditional protein therapies, thereby reducing clinical dosages, injection frequencies, and treatment costs. Our findings offer new insights into the development and application of mRNA drugs, emphasizing their therapeutic potential in long-acting drugs.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":"137-149"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785693/pdf/","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing Heart Failure Therapy: Harnessing IVT mRNA and Fusion Protein Technology to Prolong rhBNP Half-Life.\",\"authors\":\"Yingyu Guo, Tianhan Sun, Mengyao Li, Ziwei Chen, Ye Liu, Xuanmei Luo, Yuan Chen, Yayu Li, Lu Kuai, Xue Yu, Lihui Zou\",\"doi\":\"10.1007/s11095-024-03807-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Recombinant human B-type natriuretic peptide (rhBNP) has been extensively proven to be an effective mean of heart failure (HF) therapy, but its clinical application is limited by its very short half-life. This study aims to combine in vitro transcribed mRNA (IVT mRNA) and fusion protein technology to develop a rhBNP-Fc mRNA drug with long half-life, high efficiency and few side effects to treat HF.</p><p><strong>Methods: </strong>The rhBNP-Fc fusion mRNA with IgG4-Fc sequence was produced by IVT technology. rhBNP-Fc mRNA was transfected into HEK293T cells to examine the expression in vitro. rhBNP-Fc mRNA encapsulated in LNP was injected into normal mice to detect the translation efficiency, half-life and negative effects in vivo. Finally, it was injected into doxorubicin-induced HF mice to screen the cardiac protective effect.</p><p><strong>Results: </strong>The rhBNP-Fc fusion mRNA extended the half-life of rhBNP, showing sustained expression in cell line for at least one day. rhBNP-Fc mRNA translation showed dose-dependent levels, and was still detectable 5 d after injection in vivo. In the HF mouse model, a single administration of rhBNP-Fc mRNA-LNP improved cardiac function, including improving heart ejection and reducing HF biomarkers expression. Additionally, rhBNP-Fc mRNA-LNP treatment mitigated myocardial damage, normalized cardiomyocyte structure, and reduced the levels of pro-inflammatory cytokines.</p><p><strong>Conclusion: </strong>The rhBNP-Fc mRNA has the potential to serve as an alternative to traditional protein therapies, thereby reducing clinical dosages, injection frequencies, and treatment costs. Our findings offer new insights into the development and application of mRNA drugs, emphasizing their therapeutic potential in long-acting drugs.</p>\",\"PeriodicalId\":20027,\"journal\":{\"name\":\"Pharmaceutical Research\",\"volume\":\" \",\"pages\":\"137-149\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785693/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11095-024-03807-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-024-03807-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的:重组人b型利钠肽(rhBNP)已被广泛证明是治疗心力衰竭(HF)的有效手段,但其半衰期短,限制了其临床应用。本研究旨在结合体外转录mRNA (IVT mRNA)和融合蛋白技术,开发一种半衰期长、效率高、副作用少的rhBNP-Fc mRNA药物治疗心衰。方法:采用IVT技术制备IgG4-Fc序列的rhBNP-Fc融合mRNA。将rhBNP-Fc mRNA转染HEK293T细胞,检测其体外表达情况。将LNP包封的rhBNP-Fc mRNA注射到正常小鼠体内,检测其在体内的翻译效率、半衰期和负面影响。最后将其注射到阿霉素诱导的HF小鼠体内,以筛选其对心脏的保护作用。结果:rhBNP- fc融合mRNA延长了rhBNP的半衰期,在细胞系中持续表达至少1天。体内rhBNP-Fc mRNA翻译呈剂量依赖性,注射后5 d仍可检测到。在HF小鼠模型中,单次给药rhBNP-Fc mRNA-LNP可改善心功能,包括改善心脏射血和降低HF生物标志物的表达。此外,rhBNP-Fc mRNA-LNP治疗减轻了心肌损伤,使心肌细胞结构正常化,并降低了促炎细胞因子的水平。结论:rhBNP-Fc mRNA具有替代传统蛋白疗法的潜力,从而减少临床剂量、注射频率和治疗成本。我们的发现为mRNA药物的开发和应用提供了新的见解,强调了它们在长效药物中的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revolutionizing Heart Failure Therapy: Harnessing IVT mRNA and Fusion Protein Technology to Prolong rhBNP Half-Life.

Purpose: Recombinant human B-type natriuretic peptide (rhBNP) has been extensively proven to be an effective mean of heart failure (HF) therapy, but its clinical application is limited by its very short half-life. This study aims to combine in vitro transcribed mRNA (IVT mRNA) and fusion protein technology to develop a rhBNP-Fc mRNA drug with long half-life, high efficiency and few side effects to treat HF.

Methods: The rhBNP-Fc fusion mRNA with IgG4-Fc sequence was produced by IVT technology. rhBNP-Fc mRNA was transfected into HEK293T cells to examine the expression in vitro. rhBNP-Fc mRNA encapsulated in LNP was injected into normal mice to detect the translation efficiency, half-life and negative effects in vivo. Finally, it was injected into doxorubicin-induced HF mice to screen the cardiac protective effect.

Results: The rhBNP-Fc fusion mRNA extended the half-life of rhBNP, showing sustained expression in cell line for at least one day. rhBNP-Fc mRNA translation showed dose-dependent levels, and was still detectable 5 d after injection in vivo. In the HF mouse model, a single administration of rhBNP-Fc mRNA-LNP improved cardiac function, including improving heart ejection and reducing HF biomarkers expression. Additionally, rhBNP-Fc mRNA-LNP treatment mitigated myocardial damage, normalized cardiomyocyte structure, and reduced the levels of pro-inflammatory cytokines.

Conclusion: The rhBNP-Fc mRNA has the potential to serve as an alternative to traditional protein therapies, thereby reducing clinical dosages, injection frequencies, and treatment costs. Our findings offer new insights into the development and application of mRNA drugs, emphasizing their therapeutic potential in long-acting drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Research
Pharmaceutical Research 医学-化学综合
CiteScore
6.60
自引率
5.40%
发文量
276
审稿时长
3.4 months
期刊介绍: Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to: -(pre)formulation engineering and processing- computational biopharmaceutics- drug delivery and targeting- molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)- pharmacokinetics, pharmacodynamics and pharmacogenetics. Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信