ESR1突变和治疗压力导致的ERα功能障碍促进了ER+乳腺癌的血统可塑性。

IF 23.5 1区 医学 Q1 ONCOLOGY
Jackson Liang, Xiaosai Yao, Patrick Aouad, Bu-Er Wang, Lisa Crocker, Subhra Chaudhuri, Yuxin Liang, Spyros Darmanis, Jennifer Giltnane, Heather M Moore, Junko Aimi, Ching-Wei Chang, Mary R Gates, Jennifer Eng-Wong, Marc Hafner, Ciara Metcalfe
{"title":"ESR1突变和治疗压力导致的ERα功能障碍促进了ER+乳腺癌的血统可塑性。","authors":"Jackson Liang, Xiaosai Yao, Patrick Aouad, Bu-Er Wang, Lisa Crocker, Subhra Chaudhuri, Yuxin Liang, Spyros Darmanis, Jennifer Giltnane, Heather M Moore, Junko Aimi, Ching-Wei Chang, Mary R Gates, Jennifer Eng-Wong, Marc Hafner, Ciara Metcalfe","doi":"10.1038/s43018-024-00898-8","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple next-generation molecules targeting estrogen receptor α (ERα) are being investigated in breast cancer clinical trials, encompassing thousands of women globally. Development of these molecules was partly motivated by the discovery of resistance-associated mutations in ESR1 (encodes ERα). Here, we studied the impact of ERα antagonist/degraders against Esr1 mutations expressed in mouse mammary glands. Inhibition of mutant ERα induced mixed-lineage cells, characterized by aberrant co-engagement of normally disparate master transcription factors. Lineage infidelity was also observed in Esr1-wild-type mice upon long-term estrogen deprivation. In ER<sup>+</sup> breast cancer biopsy specimens, heavily pretreated tumors with no ESR1 mutation detected (NMD) frequently exhibited mixed-lineage features. ESR1-mutant tumors generally retained luminal features and higher ERα activity and exhibited an anti-proliferative response to the ERα antagonist giredestrant. ESR1-mutant tumors acquired mixed-lineage features following treatment. Lineage heterogeneity in advanced ER<sup>+</sup> breast cancer may underpin the differential benefit of investigational ERα therapeutics observed in ESR1-mutant versus NMD contexts.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":23.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ERα dysfunction caused by ESR1 mutations and therapeutic pressure promotes lineage plasticity in ER<sup>+</sup> breast cancer.\",\"authors\":\"Jackson Liang, Xiaosai Yao, Patrick Aouad, Bu-Er Wang, Lisa Crocker, Subhra Chaudhuri, Yuxin Liang, Spyros Darmanis, Jennifer Giltnane, Heather M Moore, Junko Aimi, Ching-Wei Chang, Mary R Gates, Jennifer Eng-Wong, Marc Hafner, Ciara Metcalfe\",\"doi\":\"10.1038/s43018-024-00898-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple next-generation molecules targeting estrogen receptor α (ERα) are being investigated in breast cancer clinical trials, encompassing thousands of women globally. Development of these molecules was partly motivated by the discovery of resistance-associated mutations in ESR1 (encodes ERα). Here, we studied the impact of ERα antagonist/degraders against Esr1 mutations expressed in mouse mammary glands. Inhibition of mutant ERα induced mixed-lineage cells, characterized by aberrant co-engagement of normally disparate master transcription factors. Lineage infidelity was also observed in Esr1-wild-type mice upon long-term estrogen deprivation. In ER<sup>+</sup> breast cancer biopsy specimens, heavily pretreated tumors with no ESR1 mutation detected (NMD) frequently exhibited mixed-lineage features. ESR1-mutant tumors generally retained luminal features and higher ERα activity and exhibited an anti-proliferative response to the ERα antagonist giredestrant. ESR1-mutant tumors acquired mixed-lineage features following treatment. Lineage heterogeneity in advanced ER<sup>+</sup> breast cancer may underpin the differential benefit of investigational ERα therapeutics observed in ESR1-mutant versus NMD contexts.</p>\",\"PeriodicalId\":18885,\"journal\":{\"name\":\"Nature cancer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":23.5000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s43018-024-00898-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-024-00898-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
ERα dysfunction caused by ESR1 mutations and therapeutic pressure promotes lineage plasticity in ER+ breast cancer.

Multiple next-generation molecules targeting estrogen receptor α (ERα) are being investigated in breast cancer clinical trials, encompassing thousands of women globally. Development of these molecules was partly motivated by the discovery of resistance-associated mutations in ESR1 (encodes ERα). Here, we studied the impact of ERα antagonist/degraders against Esr1 mutations expressed in mouse mammary glands. Inhibition of mutant ERα induced mixed-lineage cells, characterized by aberrant co-engagement of normally disparate master transcription factors. Lineage infidelity was also observed in Esr1-wild-type mice upon long-term estrogen deprivation. In ER+ breast cancer biopsy specimens, heavily pretreated tumors with no ESR1 mutation detected (NMD) frequently exhibited mixed-lineage features. ESR1-mutant tumors generally retained luminal features and higher ERα activity and exhibited an anti-proliferative response to the ERα antagonist giredestrant. ESR1-mutant tumors acquired mixed-lineage features following treatment. Lineage heterogeneity in advanced ER+ breast cancer may underpin the differential benefit of investigational ERα therapeutics observed in ESR1-mutant versus NMD contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature cancer
Nature cancer Medicine-Oncology
CiteScore
31.10
自引率
1.80%
发文量
129
期刊介绍: Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates. Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale. In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信