{"title":"用于黄斑孔手术视觉结果预测的监督机器学习统计模型:一项单一外科医生的标准化手术研究。","authors":"Kanika Godani, Vishma Prabhu, Priyanka Gandhi, Ayushi Choudhary, Shubham Darade, Rupal Kathare, Prathiba Hande, Ramesh Venkatesh","doi":"10.1186/s40942-025-00630-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the predictive accuracy of various machine learning (ML) statistical models in forecasting postoperative visual acuity (VA) outcomes following macular hole (MH) surgery using preoperative optical coherence tomography (OCT) parameters.</p><p><strong>Methods: </strong>This retrospective study included 158 eyes (151 patients) with full-thickness MHs treated between 2017 and 2023 by the same surgeon and using the same intraoperative surgical technique. Data from electronic medical records and OCT scans were extracted, with OCT-derived qualitative and quantitative MH characteristics recorded. Six supervised ML models-ANCOVA, Random Forest (RF) regression, K-Nearest Neighbor, Support Vector Machine, Extreme Gradient Boosting, and Lasso regression-were trained using an 80:20 training-to-testing split. Model performance was evaluated on an independent testing dataset using the XLSTAT software. In total, the ML statistical models were trained and tested on 14,652 OCT data points from 1332 OCT images.</p><p><strong>Results: </strong>Overall, 91% achieved MH closure post-surgery, with a median VA gain of -0.3 logMAR units. The RF regression model outperformed other ML models, achieving the lowest mean square error (MSE = 0.038) on internal validation. The most significant predictors of VA were postoperative MH closure status (variable importance = 43.078) and MH area index (21.328). The model accurately predicted the post-operative VA within 0.1, 0.2 and 0.3 logMAR units in 61%, 78%, and 87% of OCT images, respectively.</p><p><strong>Conclusion: </strong>The RF regression model demonstrated superior predictive accuracy for forecasting postoperative VA, suggesting ML-driven approaches may improve surgical planning and patient counselling by providing reliable insights into expected visual outcomes based on pre-operative OCT features.</p><p><strong>Clinical trial registration number: </strong>Not applicable.</p>","PeriodicalId":14289,"journal":{"name":"International Journal of Retina and Vitreous","volume":"11 1","pages":"5"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727234/pdf/","citationCount":"0","resultStr":"{\"title\":\"Supervised machine learning statistical models for visual outcome prediction in macular hole surgery: a single-surgeon, standardized surgery study.\",\"authors\":\"Kanika Godani, Vishma Prabhu, Priyanka Gandhi, Ayushi Choudhary, Shubham Darade, Rupal Kathare, Prathiba Hande, Ramesh Venkatesh\",\"doi\":\"10.1186/s40942-025-00630-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To evaluate the predictive accuracy of various machine learning (ML) statistical models in forecasting postoperative visual acuity (VA) outcomes following macular hole (MH) surgery using preoperative optical coherence tomography (OCT) parameters.</p><p><strong>Methods: </strong>This retrospective study included 158 eyes (151 patients) with full-thickness MHs treated between 2017 and 2023 by the same surgeon and using the same intraoperative surgical technique. Data from electronic medical records and OCT scans were extracted, with OCT-derived qualitative and quantitative MH characteristics recorded. Six supervised ML models-ANCOVA, Random Forest (RF) regression, K-Nearest Neighbor, Support Vector Machine, Extreme Gradient Boosting, and Lasso regression-were trained using an 80:20 training-to-testing split. Model performance was evaluated on an independent testing dataset using the XLSTAT software. In total, the ML statistical models were trained and tested on 14,652 OCT data points from 1332 OCT images.</p><p><strong>Results: </strong>Overall, 91% achieved MH closure post-surgery, with a median VA gain of -0.3 logMAR units. The RF regression model outperformed other ML models, achieving the lowest mean square error (MSE = 0.038) on internal validation. The most significant predictors of VA were postoperative MH closure status (variable importance = 43.078) and MH area index (21.328). The model accurately predicted the post-operative VA within 0.1, 0.2 and 0.3 logMAR units in 61%, 78%, and 87% of OCT images, respectively.</p><p><strong>Conclusion: </strong>The RF regression model demonstrated superior predictive accuracy for forecasting postoperative VA, suggesting ML-driven approaches may improve surgical planning and patient counselling by providing reliable insights into expected visual outcomes based on pre-operative OCT features.</p><p><strong>Clinical trial registration number: </strong>Not applicable.</p>\",\"PeriodicalId\":14289,\"journal\":{\"name\":\"International Journal of Retina and Vitreous\",\"volume\":\"11 1\",\"pages\":\"5\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727234/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Retina and Vitreous\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40942-025-00630-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Retina and Vitreous","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40942-025-00630-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Supervised machine learning statistical models for visual outcome prediction in macular hole surgery: a single-surgeon, standardized surgery study.
Purpose: To evaluate the predictive accuracy of various machine learning (ML) statistical models in forecasting postoperative visual acuity (VA) outcomes following macular hole (MH) surgery using preoperative optical coherence tomography (OCT) parameters.
Methods: This retrospective study included 158 eyes (151 patients) with full-thickness MHs treated between 2017 and 2023 by the same surgeon and using the same intraoperative surgical technique. Data from electronic medical records and OCT scans were extracted, with OCT-derived qualitative and quantitative MH characteristics recorded. Six supervised ML models-ANCOVA, Random Forest (RF) regression, K-Nearest Neighbor, Support Vector Machine, Extreme Gradient Boosting, and Lasso regression-were trained using an 80:20 training-to-testing split. Model performance was evaluated on an independent testing dataset using the XLSTAT software. In total, the ML statistical models were trained and tested on 14,652 OCT data points from 1332 OCT images.
Results: Overall, 91% achieved MH closure post-surgery, with a median VA gain of -0.3 logMAR units. The RF regression model outperformed other ML models, achieving the lowest mean square error (MSE = 0.038) on internal validation. The most significant predictors of VA were postoperative MH closure status (variable importance = 43.078) and MH area index (21.328). The model accurately predicted the post-operative VA within 0.1, 0.2 and 0.3 logMAR units in 61%, 78%, and 87% of OCT images, respectively.
Conclusion: The RF regression model demonstrated superior predictive accuracy for forecasting postoperative VA, suggesting ML-driven approaches may improve surgical planning and patient counselling by providing reliable insights into expected visual outcomes based on pre-operative OCT features.
Clinical trial registration number: Not applicable.
期刊介绍:
International Journal of Retina and Vitreous focuses on the ophthalmic subspecialty of vitreoretinal disorders. The journal presents original articles on new approaches to diagnosis, outcomes of clinical trials, innovations in pharmacological therapy and surgical techniques, as well as basic science advances that impact clinical practice. Topical areas include, but are not limited to: -Imaging of the retina, choroid and vitreous -Innovations in optical coherence tomography (OCT) -Small-gauge vitrectomy, retinal detachment, chromovitrectomy -Electroretinography (ERG), microperimetry, other functional tests -Intraocular tumors -Retinal pharmacotherapy & drug delivery -Diabetic retinopathy & other vascular diseases -Age-related macular degeneration (AMD) & other macular entities