利用膳食生物积累试验中的生物放大因子评估生物积累。

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Frank A P C Gobas, Nicole M Berg, Aaron D Redman, Thomas Parkerton, Louise Camenzuli
{"title":"利用膳食生物积累试验中的生物放大因子评估生物积累。","authors":"Frank A P C Gobas, Nicole M Berg, Aaron D Redman, Thomas Parkerton, Louise Camenzuli","doi":"10.1093/inteam/vjae046","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the fact that the UN Stockholm Convention on persistent organic pollutants specifically acknowledges that Arctic ecosystems and Indigenous communities are particularly at risk due to biomagnification of contaminants in traditional foods, the bioconcentration factor (BCF) of substances in fish remains the preferred metric for identifying the biomagnification potential of organic substances. The BCF measures uptake of substances from water in water-breathing organisms, but not biomagnification of contaminants from food sources. The purpose of this study is to investigate how the biomagnification factor (BMF) can be used in bioaccumulation assessments. To address this question, data from dietary and aqueous bioaccumulation studies in fish were compiled for a wide range of substances in fish to (i) investigate the potential correlation between the BCF and the BMF for the same substance in the same fish species and (ii) investigate computational methods for deriving both the BMF and BCF from the results of empirical dietary bioaccumulation tests. The analysis concludes that (i) empirical correlations between the BCF and BMF are of limited use for bioaccumulation assessment; (ii) dietary bioaccumulation test results can be used for bioaccumulation screening; and supports the use of both the BMF and the BCF for assessing the bioaccumulation potential of substances in water-breathing organisms.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing bioaccumulation with biomagnification factors from dietary bioaccumulation tests.\",\"authors\":\"Frank A P C Gobas, Nicole M Berg, Aaron D Redman, Thomas Parkerton, Louise Camenzuli\",\"doi\":\"10.1093/inteam/vjae046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the fact that the UN Stockholm Convention on persistent organic pollutants specifically acknowledges that Arctic ecosystems and Indigenous communities are particularly at risk due to biomagnification of contaminants in traditional foods, the bioconcentration factor (BCF) of substances in fish remains the preferred metric for identifying the biomagnification potential of organic substances. The BCF measures uptake of substances from water in water-breathing organisms, but not biomagnification of contaminants from food sources. The purpose of this study is to investigate how the biomagnification factor (BMF) can be used in bioaccumulation assessments. To address this question, data from dietary and aqueous bioaccumulation studies in fish were compiled for a wide range of substances in fish to (i) investigate the potential correlation between the BCF and the BMF for the same substance in the same fish species and (ii) investigate computational methods for deriving both the BMF and BCF from the results of empirical dietary bioaccumulation tests. The analysis concludes that (i) empirical correlations between the BCF and BMF are of limited use for bioaccumulation assessment; (ii) dietary bioaccumulation test results can be used for bioaccumulation screening; and supports the use of both the BMF and the BCF for assessing the bioaccumulation potential of substances in water-breathing organisms.</p>\",\"PeriodicalId\":13557,\"journal\":{\"name\":\"Integrated Environmental Assessment and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Environmental Assessment and Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/inteam/vjae046\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/inteam/vjae046","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

尽管《联合国关于持久性有机污染物的斯德哥尔摩公约》明确承认,由于传统食品中污染物的生物放大作用,北极生态系统和土著社区尤其面临风险,但鱼类中物质的生物浓缩系数(BCF)仍然是确定有机物质生物放大潜力的首选指标。BCF测量呼吸水的生物对水中物质的吸收,但不测量来自食物来源的污染物的生物放大。本研究的目的是探讨生物放大因子(BMF)在生物积累评价中的应用。为了解决这一问题,对鱼类中各种物质的饲料和水中生物积累研究数据进行了汇编,以:(i)研究同一种物质在同一鱼类中BCF和BMF之间的潜在相关性,(ii)研究从经验性饲料生物积累试验结果中得出BMF和BCF的计算方法。分析得出的结论是:(1)BCF和BMF之间的经验相关性对生物积累评估的应用有限;(ii)膳食生物积累试验结果可用于生物积累筛选;支持同时使用生物密度和生物密度来评估水呼吸生物体内物质的生物蓄积潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing bioaccumulation with biomagnification factors from dietary bioaccumulation tests.

Despite the fact that the UN Stockholm Convention on persistent organic pollutants specifically acknowledges that Arctic ecosystems and Indigenous communities are particularly at risk due to biomagnification of contaminants in traditional foods, the bioconcentration factor (BCF) of substances in fish remains the preferred metric for identifying the biomagnification potential of organic substances. The BCF measures uptake of substances from water in water-breathing organisms, but not biomagnification of contaminants from food sources. The purpose of this study is to investigate how the biomagnification factor (BMF) can be used in bioaccumulation assessments. To address this question, data from dietary and aqueous bioaccumulation studies in fish were compiled for a wide range of substances in fish to (i) investigate the potential correlation between the BCF and the BMF for the same substance in the same fish species and (ii) investigate computational methods for deriving both the BMF and BCF from the results of empirical dietary bioaccumulation tests. The analysis concludes that (i) empirical correlations between the BCF and BMF are of limited use for bioaccumulation assessment; (ii) dietary bioaccumulation test results can be used for bioaccumulation screening; and supports the use of both the BMF and the BCF for assessing the bioaccumulation potential of substances in water-breathing organisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Integrated Environmental Assessment and Management
Integrated Environmental Assessment and Management ENVIRONMENTAL SCIENCESTOXICOLOGY&nbs-TOXICOLOGY
CiteScore
5.90
自引率
6.50%
发文量
156
期刊介绍: Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas: Science-informed regulation, policy, and decision making Health and ecological risk and impact assessment Restoration and management of damaged ecosystems Sustaining ecosystems Managing large-scale environmental change Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society: Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信