{"title":"Hespintor负调控PI3K/Akt通路诱导肝癌细胞周期阻滞","authors":"J Sun, Y Z Lun, B Liu, W Dong","doi":"10.1007/s10517-025-06314-0","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanism of Hespintor (a protein of serpin family) inhibitory action on the growth of inoculated hepatocellular carcinoma was studied in a model of human hepatoma in nude mice by using on long-noncoding RNA (lncRNA) sequencing. Two days after tumor transplantation, Hespintor or normal saline was injected into the caudal vein at a dose of 15 μg/kg (2 times a week over 4 weeks). The tumors were isolated in 4 weeks after subcutaneous injection of human hepatoma MHCC97-H cells. In Hespintor and control groups, the complementary DNA libraries of tumor tissues were established, and transcriptome sequencing was performed. Based on RNA-sequencing data, the differentially expressing lncRNA genes (DEGs lncRNA) were obtained, and functional enrichment and interaction analyses were performed to find the regulatory gene sets. Then, the network module division method was employed to identify the key genes of the Hespintor action, as well as to build the regulatory network and critical pathways associated with the key genes with validation of the results by Western blotting. The target gene sets regulated by DEGs lncRNA were mainly enriched in cell behavior, transcriptional regulation, and cell cycle. The PI3K/Akt signaling pathway related to the revealed gene sets plays a leading role in the antitumor action of Hespintor, targeted by this serpin to down-regulate expression levels of the cell cycle regulatory proteins Cyclin D1, P-Rb, CDK4, and CDK6, thereby arresting the cell cycle in G1/S phase.</p>","PeriodicalId":9331,"journal":{"name":"Bulletin of Experimental Biology and Medicine","volume":"178 2","pages":"237-243"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hespintor Negative Regulation of PI3K/Akt Pathway Induces Cell Cycle Arrest of Hepatocellular Carcinoma.\",\"authors\":\"J Sun, Y Z Lun, B Liu, W Dong\",\"doi\":\"10.1007/s10517-025-06314-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mechanism of Hespintor (a protein of serpin family) inhibitory action on the growth of inoculated hepatocellular carcinoma was studied in a model of human hepatoma in nude mice by using on long-noncoding RNA (lncRNA) sequencing. Two days after tumor transplantation, Hespintor or normal saline was injected into the caudal vein at a dose of 15 μg/kg (2 times a week over 4 weeks). The tumors were isolated in 4 weeks after subcutaneous injection of human hepatoma MHCC97-H cells. In Hespintor and control groups, the complementary DNA libraries of tumor tissues were established, and transcriptome sequencing was performed. Based on RNA-sequencing data, the differentially expressing lncRNA genes (DEGs lncRNA) were obtained, and functional enrichment and interaction analyses were performed to find the regulatory gene sets. Then, the network module division method was employed to identify the key genes of the Hespintor action, as well as to build the regulatory network and critical pathways associated with the key genes with validation of the results by Western blotting. The target gene sets regulated by DEGs lncRNA were mainly enriched in cell behavior, transcriptional regulation, and cell cycle. The PI3K/Akt signaling pathway related to the revealed gene sets plays a leading role in the antitumor action of Hespintor, targeted by this serpin to down-regulate expression levels of the cell cycle regulatory proteins Cyclin D1, P-Rb, CDK4, and CDK6, thereby arresting the cell cycle in G1/S phase.</p>\",\"PeriodicalId\":9331,\"journal\":{\"name\":\"Bulletin of Experimental Biology and Medicine\",\"volume\":\"178 2\",\"pages\":\"237-243\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Experimental Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10517-025-06314-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10517-025-06314-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Hespintor Negative Regulation of PI3K/Akt Pathway Induces Cell Cycle Arrest of Hepatocellular Carcinoma.
The mechanism of Hespintor (a protein of serpin family) inhibitory action on the growth of inoculated hepatocellular carcinoma was studied in a model of human hepatoma in nude mice by using on long-noncoding RNA (lncRNA) sequencing. Two days after tumor transplantation, Hespintor or normal saline was injected into the caudal vein at a dose of 15 μg/kg (2 times a week over 4 weeks). The tumors were isolated in 4 weeks after subcutaneous injection of human hepatoma MHCC97-H cells. In Hespintor and control groups, the complementary DNA libraries of tumor tissues were established, and transcriptome sequencing was performed. Based on RNA-sequencing data, the differentially expressing lncRNA genes (DEGs lncRNA) were obtained, and functional enrichment and interaction analyses were performed to find the regulatory gene sets. Then, the network module division method was employed to identify the key genes of the Hespintor action, as well as to build the regulatory network and critical pathways associated with the key genes with validation of the results by Western blotting. The target gene sets regulated by DEGs lncRNA were mainly enriched in cell behavior, transcriptional regulation, and cell cycle. The PI3K/Akt signaling pathway related to the revealed gene sets plays a leading role in the antitumor action of Hespintor, targeted by this serpin to down-regulate expression levels of the cell cycle regulatory proteins Cyclin D1, P-Rb, CDK4, and CDK6, thereby arresting the cell cycle in G1/S phase.
期刊介绍:
Bulletin of Experimental Biology and Medicine presents original peer reviewed research papers and brief reports on priority new research results in physiology, biochemistry, biophysics, pharmacology, immunology, microbiology, genetics, oncology, etc. Novel trends in science are covered in new sections of the journal - Biogerontology and Human Ecology - that first appeared in 2005.
World scientific interest in stem cells prompted inclusion into Bulletin of Experimental Biology and Medicine a quarterly scientific journal Cell Technologies in Biology and Medicine (a new Russian Academy of Medical Sciences publication since 2005). It publishes only original papers from the leading research institutions on molecular biology of stem and progenitor cells, stem cell as the basis of gene therapy, molecular language of cell-to-cell communication, cytokines, chemokines, growth and other factors, pilot projects on clinical use of stem and progenitor cells.
The Russian Volume Year is published in English from April.