{"title":"通过生物信息学综合分析鉴定缺血性卒中中氧化应激相关的关键基因。","authors":"Gaiyan Li, Yu Cheng, Shanshan Ding, Qianyun Zheng, Lanqiong Kuang, Ying Zhang, Ying Zhou","doi":"10.1186/s12868-024-00921-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ischemic stroke (IS) is a common cerebrovascular disease. Although the formation of atherosclerosis, which is closely related to oxidative stress (OS), is associated with stroke-related deaths. However, the role of OS in IS is unknown.</p><p><strong>Methods: </strong>OS-related key genes were obtianed by overlapping the differentially expressed genes (DEGs) between IS and normal control (NC) specimens, IS-related genes, and OS-related genes. Then, we investigated the mechanism of action of key genes. Subsequently, protein-protein interaction (PPI) network and machine learning algorithms were utilized to excavate feature genes. In addition, the network between feature genes and microRNAs (miRNAs) was established to investigate the regulatory mechanism of feature genes. Finally, quantitative PCR (qPCR) was utilized to validate the expression of feature genes with blood specimens.</p><p><strong>Results: </strong>A total of 42 key genes related to OS were acquired. Enrichment analysis indicated that the key genes were associated with oxidative stress, reactive oxygen species, lipid and atherosclerosis, and cell migration-related pathways. Then, 6 feature genes (HSPA8, NCF2, FOS, KLF4, THBS1, and HSPA1A) related to OS were identified for IS. Besides, 6 feature genes and 255 miRNAs were utilized to establish a feature genes-miRNA network which contained 261 nodes and 277 edges. At last, qPCR results revealed that there was a trend for higher expression of FOS, KLF4, and HSPA1A in IS specimens than in NC specimens. Additionally, HSPA8 expression was significantly decreased in the IS specimens, which was consistent with the findings of the GEO database analysis.</p><p><strong>Conclusion: </strong>In conclusion, 6 feature genes (HSPA8, NCF2, FOS, KLF4, THBS1, and HSPA1A) related to OS were mined by bioinformatics analysis, which might provide a new insights into the evaluation and treatment of IS.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9031,"journal":{"name":"BMC Neuroscience","volume":"26 1","pages":"3"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727628/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of key genes associated with oxidative stress in ischemic stroke via bioinformatics integrated analysis.\",\"authors\":\"Gaiyan Li, Yu Cheng, Shanshan Ding, Qianyun Zheng, Lanqiong Kuang, Ying Zhang, Ying Zhou\",\"doi\":\"10.1186/s12868-024-00921-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ischemic stroke (IS) is a common cerebrovascular disease. Although the formation of atherosclerosis, which is closely related to oxidative stress (OS), is associated with stroke-related deaths. However, the role of OS in IS is unknown.</p><p><strong>Methods: </strong>OS-related key genes were obtianed by overlapping the differentially expressed genes (DEGs) between IS and normal control (NC) specimens, IS-related genes, and OS-related genes. Then, we investigated the mechanism of action of key genes. Subsequently, protein-protein interaction (PPI) network and machine learning algorithms were utilized to excavate feature genes. In addition, the network between feature genes and microRNAs (miRNAs) was established to investigate the regulatory mechanism of feature genes. Finally, quantitative PCR (qPCR) was utilized to validate the expression of feature genes with blood specimens.</p><p><strong>Results: </strong>A total of 42 key genes related to OS were acquired. Enrichment analysis indicated that the key genes were associated with oxidative stress, reactive oxygen species, lipid and atherosclerosis, and cell migration-related pathways. Then, 6 feature genes (HSPA8, NCF2, FOS, KLF4, THBS1, and HSPA1A) related to OS were identified for IS. Besides, 6 feature genes and 255 miRNAs were utilized to establish a feature genes-miRNA network which contained 261 nodes and 277 edges. At last, qPCR results revealed that there was a trend for higher expression of FOS, KLF4, and HSPA1A in IS specimens than in NC specimens. Additionally, HSPA8 expression was significantly decreased in the IS specimens, which was consistent with the findings of the GEO database analysis.</p><p><strong>Conclusion: </strong>In conclusion, 6 feature genes (HSPA8, NCF2, FOS, KLF4, THBS1, and HSPA1A) related to OS were mined by bioinformatics analysis, which might provide a new insights into the evaluation and treatment of IS.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>\",\"PeriodicalId\":9031,\"journal\":{\"name\":\"BMC Neuroscience\",\"volume\":\"26 1\",\"pages\":\"3\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727628/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12868-024-00921-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12868-024-00921-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Identification of key genes associated with oxidative stress in ischemic stroke via bioinformatics integrated analysis.
Background: Ischemic stroke (IS) is a common cerebrovascular disease. Although the formation of atherosclerosis, which is closely related to oxidative stress (OS), is associated with stroke-related deaths. However, the role of OS in IS is unknown.
Methods: OS-related key genes were obtianed by overlapping the differentially expressed genes (DEGs) between IS and normal control (NC) specimens, IS-related genes, and OS-related genes. Then, we investigated the mechanism of action of key genes. Subsequently, protein-protein interaction (PPI) network and machine learning algorithms were utilized to excavate feature genes. In addition, the network between feature genes and microRNAs (miRNAs) was established to investigate the regulatory mechanism of feature genes. Finally, quantitative PCR (qPCR) was utilized to validate the expression of feature genes with blood specimens.
Results: A total of 42 key genes related to OS were acquired. Enrichment analysis indicated that the key genes were associated with oxidative stress, reactive oxygen species, lipid and atherosclerosis, and cell migration-related pathways. Then, 6 feature genes (HSPA8, NCF2, FOS, KLF4, THBS1, and HSPA1A) related to OS were identified for IS. Besides, 6 feature genes and 255 miRNAs were utilized to establish a feature genes-miRNA network which contained 261 nodes and 277 edges. At last, qPCR results revealed that there was a trend for higher expression of FOS, KLF4, and HSPA1A in IS specimens than in NC specimens. Additionally, HSPA8 expression was significantly decreased in the IS specimens, which was consistent with the findings of the GEO database analysis.
Conclusion: In conclusion, 6 feature genes (HSPA8, NCF2, FOS, KLF4, THBS1, and HSPA1A) related to OS were mined by bioinformatics analysis, which might provide a new insights into the evaluation and treatment of IS.
期刊介绍:
BMC Neuroscience is an open access, peer-reviewed journal that considers articles on all aspects of neuroscience, welcoming studies that provide insight into the molecular, cellular, developmental, genetic and genomic, systems, network, cognitive and behavioral aspects of nervous system function in both health and disease. Both experimental and theoretical studies are within scope, as are studies that describe methodological approaches to monitoring or manipulating nervous system function.