Paul Czodrowski, Helge Vatheuer, Oscar Palomino-Hernandez, Janis Müller, Phillip Galonska, Serghei Glinca
{"title":"蛋白质配体复合物中的质子化效应——以计算和实验方法研究内硫肽素和胃抑素a为例。","authors":"Paul Czodrowski, Helge Vatheuer, Oscar Palomino-Hernandez, Janis Müller, Phillip Galonska, Serghei Glinca","doi":"10.1002/cmdc.202400953","DOIUrl":null,"url":null,"abstract":"<p><p>Protonation states serve as an essential molecular recognition motif for biological processes. Their correct consideration is key to successful drug design campaigns, since chemoinformatic tools usually deal with default protonation states of ligands and proteins and miss atypical protonation states. The protonation pattern for the Endothiapepsin/PepstatinA (EP/pepA) complex is investigated using different dry lab and wet lab techniques. ITC experiments revealed an uptake of more than one mole of protons upon pepA binding to EP. Since these experiments were performed at physiological conditions (and not at pH=4 at which a large variety of crystal structures is available), a novel crystal structure at pH=7.6 was determined. This crystal structure showed that only modest structural changes occur upon increasing the pH value. This lead to computational studies (Poisson Boltzmann calculations and constant pH MD simulations) to reveal the exact location of the protonation event. Both computational studies could reveal a significant pKa shift resulting in non-default protonation state and that the catalytic dyad is responsible for the uptake of protons. This study shows that assessing protonation states for two separate systems (protein and ligand) might result in the incorrect assignment of protonation states and hence incorrect calculation of binding energy.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400953"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protonation effects in protein-ligand complexes - a case study of endothiapepsin and pepstatin A with computational and experimental methods.\",\"authors\":\"Paul Czodrowski, Helge Vatheuer, Oscar Palomino-Hernandez, Janis Müller, Phillip Galonska, Serghei Glinca\",\"doi\":\"10.1002/cmdc.202400953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protonation states serve as an essential molecular recognition motif for biological processes. Their correct consideration is key to successful drug design campaigns, since chemoinformatic tools usually deal with default protonation states of ligands and proteins and miss atypical protonation states. The protonation pattern for the Endothiapepsin/PepstatinA (EP/pepA) complex is investigated using different dry lab and wet lab techniques. ITC experiments revealed an uptake of more than one mole of protons upon pepA binding to EP. Since these experiments were performed at physiological conditions (and not at pH=4 at which a large variety of crystal structures is available), a novel crystal structure at pH=7.6 was determined. This crystal structure showed that only modest structural changes occur upon increasing the pH value. This lead to computational studies (Poisson Boltzmann calculations and constant pH MD simulations) to reveal the exact location of the protonation event. Both computational studies could reveal a significant pKa shift resulting in non-default protonation state and that the catalytic dyad is responsible for the uptake of protons. This study shows that assessing protonation states for two separate systems (protein and ligand) might result in the incorrect assignment of protonation states and hence incorrect calculation of binding energy.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202400953\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400953\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400953","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Protonation effects in protein-ligand complexes - a case study of endothiapepsin and pepstatin A with computational and experimental methods.
Protonation states serve as an essential molecular recognition motif for biological processes. Their correct consideration is key to successful drug design campaigns, since chemoinformatic tools usually deal with default protonation states of ligands and proteins and miss atypical protonation states. The protonation pattern for the Endothiapepsin/PepstatinA (EP/pepA) complex is investigated using different dry lab and wet lab techniques. ITC experiments revealed an uptake of more than one mole of protons upon pepA binding to EP. Since these experiments were performed at physiological conditions (and not at pH=4 at which a large variety of crystal structures is available), a novel crystal structure at pH=7.6 was determined. This crystal structure showed that only modest structural changes occur upon increasing the pH value. This lead to computational studies (Poisson Boltzmann calculations and constant pH MD simulations) to reveal the exact location of the protonation event. Both computational studies could reveal a significant pKa shift resulting in non-default protonation state and that the catalytic dyad is responsible for the uptake of protons. This study shows that assessing protonation states for two separate systems (protein and ligand) might result in the incorrect assignment of protonation states and hence incorrect calculation of binding energy.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.