识别新型金属结合药物载体的计算方法:进展与挑战。

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Guoli Xiong, Zhiyan Xiao
{"title":"识别新型金属结合药物载体的计算方法:进展与挑战。","authors":"Guoli Xiong, Zhiyan Xiao","doi":"10.1016/j.drudis.2025.104293","DOIUrl":null,"url":null,"abstract":"<p><p>Metalloenzymes are important therapeutic targets for a variety of human diseases. Computational approaches have recently emerged as effective tools to understand metal-ligand interactions and expand the structural diversity of both metalloenzyme inhibitors (MIs) and metal-binding pharmacophores (MBPs). In this review, we highlight key advances in currently available fine-tuning modeling methods and data-driven cheminformatic approaches. We also discuss major challenges to the recognition of novel MBPs and MIs. The evidence provided herein could expedite future computational efforts to guide metalloenzyme-based drug discovery.</p>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":" ","pages":"104293"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational approaches for the identification of novel metal-binding pharmacophores: advances and challenges.\",\"authors\":\"Guoli Xiong, Zhiyan Xiao\",\"doi\":\"10.1016/j.drudis.2025.104293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metalloenzymes are important therapeutic targets for a variety of human diseases. Computational approaches have recently emerged as effective tools to understand metal-ligand interactions and expand the structural diversity of both metalloenzyme inhibitors (MIs) and metal-binding pharmacophores (MBPs). In this review, we highlight key advances in currently available fine-tuning modeling methods and data-driven cheminformatic approaches. We also discuss major challenges to the recognition of novel MBPs and MIs. The evidence provided herein could expedite future computational efforts to guide metalloenzyme-based drug discovery.</p>\",\"PeriodicalId\":301,\"journal\":{\"name\":\"Drug Discovery Today\",\"volume\":\" \",\"pages\":\"104293\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.drudis.2025.104293\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.drudis.2025.104293","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

金属酶是治疗多种人类疾病的重要靶点。计算方法最近成为理解金属-配体相互作用和扩大金属酶抑制剂(MIs)和金属结合药物载体(MBPs)结构多样性的有效工具。在这篇综述中,我们重点介绍了目前可用的微调建模方法和数据驱动的化学信息学方法的关键进展。我们还讨论了识别新MBPs和MIs的主要挑战。本文提供的证据可以加快未来的计算工作,以指导金属酶为基础的药物发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational approaches for the identification of novel metal-binding pharmacophores: advances and challenges.

Metalloenzymes are important therapeutic targets for a variety of human diseases. Computational approaches have recently emerged as effective tools to understand metal-ligand interactions and expand the structural diversity of both metalloenzyme inhibitors (MIs) and metal-binding pharmacophores (MBPs). In this review, we highlight key advances in currently available fine-tuning modeling methods and data-driven cheminformatic approaches. We also discuss major challenges to the recognition of novel MBPs and MIs. The evidence provided herein could expedite future computational efforts to guide metalloenzyme-based drug discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Discovery Today
Drug Discovery Today 医学-药学
CiteScore
14.80
自引率
2.70%
发文量
293
审稿时长
6 months
期刊介绍: Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed. Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信