Vandan Nagar, Farhat Ansari, Murugadas Vaiyapuri, Toms C Joseph
{"title":"印度喀拉拉邦水生环境中的有毒和耐多药气单胞菌:对鱼类和人类的潜在风险。","authors":"Vandan Nagar, Farhat Ansari, Murugadas Vaiyapuri, Toms C Joseph","doi":"10.1007/s42770-024-01601-w","DOIUrl":null,"url":null,"abstract":"<p><p>Aeromonas inhabit diverse aquatic habitats and are recognized as both opportunistic and primary pathogens of fish and humans. This study delineates the biochemical and gyrB sequence-based molecular identification of 14 Aeromonas strains isolated from aquatic environments in Kerala, India, identifying them as A. dhakensis (50%), A. hydrophila (28.6%), and A. jandaei (21.4%). These strains exhibit a high prevalence of virulence genes (act, flaA, ser, gcat, lip, and ela) implicated in pathogenesis in both fish and humans. These findings underline the emergence of A. dhakensis, often misidentified as A. hydrophila, as a potential pathogen, highlighting the necessity for comprehensive identification methods. Significantly, all strains demonstrated beta-hemolysis and moderate to strong biofilm formation, enhancing their infectivity potential. Moreover, all isolates exhibited multidrug resistance, with a multiple antimicrobial resistance (MAR) index ranging from 0.39 to 0.56, and a significant presence of class 1 (500-1100 bp) and class 2 (250-700 bp) integrons, indicating their potential risk to both fish and human populations. Our results underscore the role of aquatic environment as a repository for virulent and multidrug-resistant Aeromonas spp., emphasizing the imperative for prudent antimicrobial usage and regular monitoring of antimicrobial resistance (AMR) in these environments.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virulent and multidrug-resistant Aeromonas in aquatic environments of Kerala, India: potential risks to fish and humans.\",\"authors\":\"Vandan Nagar, Farhat Ansari, Murugadas Vaiyapuri, Toms C Joseph\",\"doi\":\"10.1007/s42770-024-01601-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aeromonas inhabit diverse aquatic habitats and are recognized as both opportunistic and primary pathogens of fish and humans. This study delineates the biochemical and gyrB sequence-based molecular identification of 14 Aeromonas strains isolated from aquatic environments in Kerala, India, identifying them as A. dhakensis (50%), A. hydrophila (28.6%), and A. jandaei (21.4%). These strains exhibit a high prevalence of virulence genes (act, flaA, ser, gcat, lip, and ela) implicated in pathogenesis in both fish and humans. These findings underline the emergence of A. dhakensis, often misidentified as A. hydrophila, as a potential pathogen, highlighting the necessity for comprehensive identification methods. Significantly, all strains demonstrated beta-hemolysis and moderate to strong biofilm formation, enhancing their infectivity potential. Moreover, all isolates exhibited multidrug resistance, with a multiple antimicrobial resistance (MAR) index ranging from 0.39 to 0.56, and a significant presence of class 1 (500-1100 bp) and class 2 (250-700 bp) integrons, indicating their potential risk to both fish and human populations. Our results underscore the role of aquatic environment as a repository for virulent and multidrug-resistant Aeromonas spp., emphasizing the imperative for prudent antimicrobial usage and regular monitoring of antimicrobial resistance (AMR) in these environments.</p>\",\"PeriodicalId\":9090,\"journal\":{\"name\":\"Brazilian Journal of Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42770-024-01601-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42770-024-01601-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Virulent and multidrug-resistant Aeromonas in aquatic environments of Kerala, India: potential risks to fish and humans.
Aeromonas inhabit diverse aquatic habitats and are recognized as both opportunistic and primary pathogens of fish and humans. This study delineates the biochemical and gyrB sequence-based molecular identification of 14 Aeromonas strains isolated from aquatic environments in Kerala, India, identifying them as A. dhakensis (50%), A. hydrophila (28.6%), and A. jandaei (21.4%). These strains exhibit a high prevalence of virulence genes (act, flaA, ser, gcat, lip, and ela) implicated in pathogenesis in both fish and humans. These findings underline the emergence of A. dhakensis, often misidentified as A. hydrophila, as a potential pathogen, highlighting the necessity for comprehensive identification methods. Significantly, all strains demonstrated beta-hemolysis and moderate to strong biofilm formation, enhancing their infectivity potential. Moreover, all isolates exhibited multidrug resistance, with a multiple antimicrobial resistance (MAR) index ranging from 0.39 to 0.56, and a significant presence of class 1 (500-1100 bp) and class 2 (250-700 bp) integrons, indicating their potential risk to both fish and human populations. Our results underscore the role of aquatic environment as a repository for virulent and multidrug-resistant Aeromonas spp., emphasizing the imperative for prudent antimicrobial usage and regular monitoring of antimicrobial resistance (AMR) in these environments.
期刊介绍:
The Brazilian Journal of Microbiology is an international peer reviewed journal that covers a wide-range of research on fundamental and applied aspects of microbiology.
The journal considers for publication original research articles, short communications, reviews, and letters to the editor, that may be submitted to the following sections: Biotechnology and Industrial Microbiology, Food Microbiology, Bacterial and Fungal Pathogenesis, Clinical Microbiology, Environmental Microbiology, Veterinary Microbiology, Fungal and Bacterial Physiology, Bacterial, Fungal and Virus Molecular Biology, Education in Microbiology. For more details on each section, please check out the instructions for authors.
The journal is the official publication of the Brazilian Society of Microbiology and currently publishes 4 issues per year.