用第一性原理计算揭示3,4-二硝基吡唑的各向异性冲击响应。

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-01-23 Epub Date: 2025-01-13 DOI:10.1021/acs.jpca.4c06583
Chaowen Yang, Yi Yang, Shuangfei Zhu, Shuhai Zhang, Yang Liu, Yahong Chen
{"title":"用第一性原理计算揭示3,4-二硝基吡唑的各向异性冲击响应。","authors":"Chaowen Yang, Yi Yang, Shuangfei Zhu, Shuhai Zhang, Yang Liu, Yahong Chen","doi":"10.1021/acs.jpca.4c06583","DOIUrl":null,"url":null,"abstract":"<p><p>DNP (3,4-dinitropyrazole) has attracted much interest due to its promising melting characteristics and high detonation performances, such as low melting point, high density, high detonation velocity, and low sensitivity. In this work, first-principles molecular dynamics (MD) simulations were performed to investigate the anisotropic shock response of DNP in conjunction with the multiscale shock technique (MSST). The initial decomposition mechanism was revealed through the evolution of the chemical reaction and product analysis. Independent gradients based on the Hirshfeld partition (IGMH) method showed that van der Waals forces mainly exist between the layered structures. Chemical reaction analyses revealed four major initial decomposition reactions for the DNP molecule. At different shock velocities, the molecules in <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>01</mn><mo>)</mo></math> were more inclined to undergo H dissociation reactions, whereas the molecules in <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mo>)</mo></math> were more inclined to undergo nitro-dissociation reactions. Product analysis showed that the faster the shock velocities, the earlier the DNP molecules completely disappeared. Furthermore, N<sub>2</sub> and CO<sub>2</sub> were mainly produced by the ring-opening reaction, and their numbers in <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>01</mn><mo>)</mo></math> were higher than in <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mo>)</mo></math>, indicating that the ring-opening reaction was more easy to occur in <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>01</mn><mo>)</mo></math>. The ring-opening reaction mainly occurred in <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>01</mn><mo>)</mo></math>, suggesting that <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>01</mn><mo>)</mo></math> was more decomposable than <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mo>)</mo></math>. The fitting results of the state equation showed that the theoretical detonation pressures for <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>01</mn><mo>)</mo></math> and <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mo>)</mo></math> are close to the experimental value. These results could help to increase the understanding of shock-induced anisotropy in energetic materials.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"695-704"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic Shock Response of 3,4-Dinitropyrazole Revealed by First-Principles Calculations.\",\"authors\":\"Chaowen Yang, Yi Yang, Shuangfei Zhu, Shuhai Zhang, Yang Liu, Yahong Chen\",\"doi\":\"10.1021/acs.jpca.4c06583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNP (3,4-dinitropyrazole) has attracted much interest due to its promising melting characteristics and high detonation performances, such as low melting point, high density, high detonation velocity, and low sensitivity. In this work, first-principles molecular dynamics (MD) simulations were performed to investigate the anisotropic shock response of DNP in conjunction with the multiscale shock technique (MSST). The initial decomposition mechanism was revealed through the evolution of the chemical reaction and product analysis. Independent gradients based on the Hirshfeld partition (IGMH) method showed that van der Waals forces mainly exist between the layered structures. Chemical reaction analyses revealed four major initial decomposition reactions for the DNP molecule. At different shock velocities, the molecules in <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>01</mn><mo>)</mo></math> were more inclined to undergo H dissociation reactions, whereas the molecules in <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mo>)</mo></math> were more inclined to undergo nitro-dissociation reactions. Product analysis showed that the faster the shock velocities, the earlier the DNP molecules completely disappeared. Furthermore, N<sub>2</sub> and CO<sub>2</sub> were mainly produced by the ring-opening reaction, and their numbers in <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>01</mn><mo>)</mo></math> were higher than in <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mo>)</mo></math>, indicating that the ring-opening reaction was more easy to occur in <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>01</mn><mo>)</mo></math>. The ring-opening reaction mainly occurred in <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>01</mn><mo>)</mo></math>, suggesting that <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>01</mn><mo>)</mo></math> was more decomposable than <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mo>)</mo></math>. The fitting results of the state equation showed that the theoretical detonation pressures for <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>01</mn><mo>)</mo></math> and <math><mo>(</mo><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn><mover><mn>1</mn><mo>¯</mo></mover><mo>)</mo></math> are close to the experimental value. These results could help to increase the understanding of shock-induced anisotropy in energetic materials.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"695-704\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c06583\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06583","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

DNP(3,4-二硝基吡唑)具有熔点低、密度高、爆速快、灵敏度低等良好的熔化特性和较高的爆轰性能,因而备受关注。在这项工作中,结合多尺度冲击技术(MSST),对 DNP 的各向异性冲击响应进行了第一原理分子动力学(MD)模拟研究。通过化学反应的演变和产物分析,揭示了最初的分解机制。基于 Hirshfeld 分隔(IGMH)方法的独立梯度显示,层状结构之间主要存在范德华力。化学反应分析揭示了 DNP 分子的四个主要初始分解反应。在不同的冲击速度下,(1¯01)中的分子更倾向于发生H解离反应,而(1¯01¯)中的分子更倾向于发生硝基解离反应。产物分析表明,冲击速度越快,DNP 分子完全消失的时间越早。此外,N2 和 CO2 主要由开环反应生成,且它们在(1'01')中的数量比在(1'01')中多,这表明开环反应在(1'01')中更容易发生。开环反应主要发生在(1'01)中,表明(1'01)比(1'01')更易分解。状态方程拟合结果表明,(1¯01)和(1¯01¯)的理论爆轰压力接近实验值。这些结果有助于加深对高能材料冲击诱导各向异性的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anisotropic Shock Response of 3,4-Dinitropyrazole Revealed by First-Principles Calculations.

DNP (3,4-dinitropyrazole) has attracted much interest due to its promising melting characteristics and high detonation performances, such as low melting point, high density, high detonation velocity, and low sensitivity. In this work, first-principles molecular dynamics (MD) simulations were performed to investigate the anisotropic shock response of DNP in conjunction with the multiscale shock technique (MSST). The initial decomposition mechanism was revealed through the evolution of the chemical reaction and product analysis. Independent gradients based on the Hirshfeld partition (IGMH) method showed that van der Waals forces mainly exist between the layered structures. Chemical reaction analyses revealed four major initial decomposition reactions for the DNP molecule. At different shock velocities, the molecules in (1¯01) were more inclined to undergo H dissociation reactions, whereas the molecules in (1¯01¯) were more inclined to undergo nitro-dissociation reactions. Product analysis showed that the faster the shock velocities, the earlier the DNP molecules completely disappeared. Furthermore, N2 and CO2 were mainly produced by the ring-opening reaction, and their numbers in (1¯01) were higher than in (1¯01¯), indicating that the ring-opening reaction was more easy to occur in (1¯01). The ring-opening reaction mainly occurred in (1¯01), suggesting that (1¯01) was more decomposable than (1¯01¯). The fitting results of the state equation showed that the theoretical detonation pressures for (1¯01) and (1¯01¯) are close to the experimental value. These results could help to increase the understanding of shock-induced anisotropy in energetic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信