Darragh P O'Brien, Hannah B L Jones, Yuqi Shi, Franziska Guenther, Iolanda Vendrell, Rosa Viner, Paul E Brennan, Emma Mead, Tryfon Zarganes-Tzitzikas, John B Davis, Adán Pinto-Fernández, Katherine S England, Emma J Murphy, Andrew P Turnbull, Benedikt M Kessler
{"title":"泛素特异性蛋白酶USP30与含氰吡咯烷共价抑制剂配合物的结构动力学。","authors":"Darragh P O'Brien, Hannah B L Jones, Yuqi Shi, Franziska Guenther, Iolanda Vendrell, Rosa Viner, Paul E Brennan, Emma Mead, Tryfon Zarganes-Tzitzikas, John B Davis, Adán Pinto-Fernández, Katherine S England, Emma J Murphy, Andrew P Turnbull, Benedikt M Kessler","doi":"10.1021/acs.jproteome.4c00618","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibition of the mitochondrial deubiquitinating (DUB) enzyme USP30 is neuroprotective and presents therapeutic opportunities for the treatment of idiopathic Parkinson's disease and mitophagy-related disorders. We integrated structural and quantitative proteomics with biochemical assays to decipher the mode of action of covalent USP30 inhibition by a small-molecule containing a cyanopyrrolidine reactive group, <b>USP30-I-1</b>. The inhibitor demonstrated high potency and selectivity for endogenous USP30 in neuroblastoma cells. Enzyme kinetics and hydrogen-deuterium eXchange mass spectrometry indicated that the inhibitor binds tightly to regions surrounding the USP30 catalytic cysteine and positions itself to form a binding pocket along the thumb and palm domains of the protein, thereby interfering its interaction with ubiquitin substrates. A comparison to a noncovalent USP30 inhibitor containing a benzosulfonamide scaffold revealed a slightly different binding mode closer to the active site Cys77, which may provide the molecular basis for improved selectivity toward USP30 against other members of the DUB enzyme family. Our results highlight advantages in developing covalent inhibitors, such as <b>USP30-I-1</b>, for targeting USP30 as treatment of disorders with impaired mitophagy.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Dynamics of the Ubiquitin Specific Protease USP30 in Complex with a Cyanopyrrolidine-Containing Covalent Inhibitor.\",\"authors\":\"Darragh P O'Brien, Hannah B L Jones, Yuqi Shi, Franziska Guenther, Iolanda Vendrell, Rosa Viner, Paul E Brennan, Emma Mead, Tryfon Zarganes-Tzitzikas, John B Davis, Adán Pinto-Fernández, Katherine S England, Emma J Murphy, Andrew P Turnbull, Benedikt M Kessler\",\"doi\":\"10.1021/acs.jproteome.4c00618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inhibition of the mitochondrial deubiquitinating (DUB) enzyme USP30 is neuroprotective and presents therapeutic opportunities for the treatment of idiopathic Parkinson's disease and mitophagy-related disorders. We integrated structural and quantitative proteomics with biochemical assays to decipher the mode of action of covalent USP30 inhibition by a small-molecule containing a cyanopyrrolidine reactive group, <b>USP30-I-1</b>. The inhibitor demonstrated high potency and selectivity for endogenous USP30 in neuroblastoma cells. Enzyme kinetics and hydrogen-deuterium eXchange mass spectrometry indicated that the inhibitor binds tightly to regions surrounding the USP30 catalytic cysteine and positions itself to form a binding pocket along the thumb and palm domains of the protein, thereby interfering its interaction with ubiquitin substrates. A comparison to a noncovalent USP30 inhibitor containing a benzosulfonamide scaffold revealed a slightly different binding mode closer to the active site Cys77, which may provide the molecular basis for improved selectivity toward USP30 against other members of the DUB enzyme family. Our results highlight advantages in developing covalent inhibitors, such as <b>USP30-I-1</b>, for targeting USP30 as treatment of disorders with impaired mitophagy.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00618\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00618","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Structural Dynamics of the Ubiquitin Specific Protease USP30 in Complex with a Cyanopyrrolidine-Containing Covalent Inhibitor.
Inhibition of the mitochondrial deubiquitinating (DUB) enzyme USP30 is neuroprotective and presents therapeutic opportunities for the treatment of idiopathic Parkinson's disease and mitophagy-related disorders. We integrated structural and quantitative proteomics with biochemical assays to decipher the mode of action of covalent USP30 inhibition by a small-molecule containing a cyanopyrrolidine reactive group, USP30-I-1. The inhibitor demonstrated high potency and selectivity for endogenous USP30 in neuroblastoma cells. Enzyme kinetics and hydrogen-deuterium eXchange mass spectrometry indicated that the inhibitor binds tightly to regions surrounding the USP30 catalytic cysteine and positions itself to form a binding pocket along the thumb and palm domains of the protein, thereby interfering its interaction with ubiquitin substrates. A comparison to a noncovalent USP30 inhibitor containing a benzosulfonamide scaffold revealed a slightly different binding mode closer to the active site Cys77, which may provide the molecular basis for improved selectivity toward USP30 against other members of the DUB enzyme family. Our results highlight advantages in developing covalent inhibitors, such as USP30-I-1, for targeting USP30 as treatment of disorders with impaired mitophagy.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".