Prabashi Manuja Wickramasinghe, Chenoa NG Kaufman, Olav Rueppell
{"title":"局部暴露的蜜蜂女王热灭活以色列急性麻痹病毒不能保护他们的后代对活动性感染","authors":"Prabashi Manuja Wickramasinghe, Chenoa NG Kaufman, Olav Rueppell","doi":"10.1007/s13592-024-01135-y","DOIUrl":null,"url":null,"abstract":"<div><p>Honey bees (<i>Apis mellifera</i>) confront a multitude of challenges to their health throughout their lifespan and have naturally evolved protective mechanisms to defend against biological stressors. Transgenerational immune priming (TGIP) is one such defense mechanism that confers protection against bacterial infections from parents to offspring. However, it is unclear whether TGIP in honey bees also protects against viral infections, which may offer a promising pathway to decrease the honey bees’ susceptibility to viral infections. We studied our hypothesis that honey bees can prime their offspring against Israeli acute paralysis virus (IAPV). We tested the prediction that the offspring of queens exposed to thermally inactivated IAPV would exhibit higher survival of an acute IAPV infection than the offspring of sham-treated queens. Based on pilot studies that compared the effects of different inoculation methods, we topically inoculated experimental queens with heat-inactivated IAPV and compared survival of an infection with active IAPV between their offspring and offspring of sham-treated control queens. IAPV infection significantly decreased offspring survival but maternal exposure to the inactive virus did not affect this outcome. Our results fail to support the notion that maternal exposure confers the same level of protection against virus infections as observed against bacterial infections, at least in this specific instant, underscoring the intricate nature of the honey bees’ transgenerational immune response. Further development of effective strategies against viral threats to improve honey bee health is needed.</p></div>","PeriodicalId":8078,"journal":{"name":"Apidologie","volume":"56 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13592-024-01135-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Topical exposure of honey bee queens to heat-inactivated Israeli acute paralysis virus does not protect their offspring against active infection\",\"authors\":\"Prabashi Manuja Wickramasinghe, Chenoa NG Kaufman, Olav Rueppell\",\"doi\":\"10.1007/s13592-024-01135-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Honey bees (<i>Apis mellifera</i>) confront a multitude of challenges to their health throughout their lifespan and have naturally evolved protective mechanisms to defend against biological stressors. Transgenerational immune priming (TGIP) is one such defense mechanism that confers protection against bacterial infections from parents to offspring. However, it is unclear whether TGIP in honey bees also protects against viral infections, which may offer a promising pathway to decrease the honey bees’ susceptibility to viral infections. We studied our hypothesis that honey bees can prime their offspring against Israeli acute paralysis virus (IAPV). We tested the prediction that the offspring of queens exposed to thermally inactivated IAPV would exhibit higher survival of an acute IAPV infection than the offspring of sham-treated queens. Based on pilot studies that compared the effects of different inoculation methods, we topically inoculated experimental queens with heat-inactivated IAPV and compared survival of an infection with active IAPV between their offspring and offspring of sham-treated control queens. IAPV infection significantly decreased offspring survival but maternal exposure to the inactive virus did not affect this outcome. Our results fail to support the notion that maternal exposure confers the same level of protection against virus infections as observed against bacterial infections, at least in this specific instant, underscoring the intricate nature of the honey bees’ transgenerational immune response. Further development of effective strategies against viral threats to improve honey bee health is needed.</p></div>\",\"PeriodicalId\":8078,\"journal\":{\"name\":\"Apidologie\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13592-024-01135-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apidologie\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13592-024-01135-y\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apidologie","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s13592-024-01135-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Topical exposure of honey bee queens to heat-inactivated Israeli acute paralysis virus does not protect their offspring against active infection
Honey bees (Apis mellifera) confront a multitude of challenges to their health throughout their lifespan and have naturally evolved protective mechanisms to defend against biological stressors. Transgenerational immune priming (TGIP) is one such defense mechanism that confers protection against bacterial infections from parents to offspring. However, it is unclear whether TGIP in honey bees also protects against viral infections, which may offer a promising pathway to decrease the honey bees’ susceptibility to viral infections. We studied our hypothesis that honey bees can prime their offspring against Israeli acute paralysis virus (IAPV). We tested the prediction that the offspring of queens exposed to thermally inactivated IAPV would exhibit higher survival of an acute IAPV infection than the offspring of sham-treated queens. Based on pilot studies that compared the effects of different inoculation methods, we topically inoculated experimental queens with heat-inactivated IAPV and compared survival of an infection with active IAPV between their offspring and offspring of sham-treated control queens. IAPV infection significantly decreased offspring survival but maternal exposure to the inactive virus did not affect this outcome. Our results fail to support the notion that maternal exposure confers the same level of protection against virus infections as observed against bacterial infections, at least in this specific instant, underscoring the intricate nature of the honey bees’ transgenerational immune response. Further development of effective strategies against viral threats to improve honey bee health is needed.
期刊介绍:
Apidologie is a peer-reviewed journal devoted to the biology of insects belonging to the superfamily Apoidea.
Its range of coverage includes behavior, ecology, pollination, genetics, physiology, systematics, toxicology and pathology. Also accepted are papers on the rearing, exploitation and practical use of Apoidea and their products, as far as they make a clear contribution to the understanding of bee biology.
Apidologie is an official publication of the Institut National de la Recherche Agronomique (INRA) and Deutscher Imkerbund E.V. (D.I.B.)