Wei Liu, Yue Li, Deli Gao, Yezeng He, Yasser Vasseghian, Akbar Hojjati-Najafabadi
{"title":"以AlCoCrFeNi2.1共晶高熵合金为粘结剂的聚晶金刚石的组织与性能","authors":"Wei Liu, Yue Li, Deli Gao, Yezeng He, Yasser Vasseghian, Akbar Hojjati-Najafabadi","doi":"10.1007/s42114-025-01214-3","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of polycrystalline diamond (PCD) tools largely depends on the adhesion and catalyzing effect of the binder phase. In this study, AlCoCrFeNi<sub>2.1</sub> eutectic high-entropy alloy (HEA) was used as a new binder material to synthesize the PCD samples. First-principles calculations showed that the interface strength between HEA and diamond is better than that between cobalt and diamond, suggesting that the HEA/PCD combination has the potential to exhibit better properties than the conventional cobalt/PCD tools. PCD samples with HEA as the binder phase were successfully synthesized using high-pressure and high-temperature conditions of 8.0 GPa and 1500–1700℃. Several key performance indicators, including thermal expansion coefficient, Vickers hardness, transverse rupture strength, compressive strength, and wear resistance were measured to comprehensively evaluate the overall performance of the well-sintered HEA/PCD. The results showed that, compared with conventional cobalt/PCD, the HEA/PCD exhibited a lower thermal expansion coefficient and reduced graphitization of diamond at high temperatures above 920 K. HEA/PCD also demonstrated better mechanical properties than Co/PCD, including higher hardness, and greater transverse rupture strength and compressive strength. Moreover, over the same cutting distance against the granite block, HEA/PCD tools exhibited significantly lower wear loss than Co/PCD, indicating superior wear resistance. This study provides new insights and strategies for the design and optimization of PCD binders and PCD tools.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01214-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Microstructure and properties of polycrystalline diamond with AlCoCrFeNi2.1 eutectic high-entropy alloys as binder\",\"authors\":\"Wei Liu, Yue Li, Deli Gao, Yezeng He, Yasser Vasseghian, Akbar Hojjati-Najafabadi\",\"doi\":\"10.1007/s42114-025-01214-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The performance of polycrystalline diamond (PCD) tools largely depends on the adhesion and catalyzing effect of the binder phase. In this study, AlCoCrFeNi<sub>2.1</sub> eutectic high-entropy alloy (HEA) was used as a new binder material to synthesize the PCD samples. First-principles calculations showed that the interface strength between HEA and diamond is better than that between cobalt and diamond, suggesting that the HEA/PCD combination has the potential to exhibit better properties than the conventional cobalt/PCD tools. PCD samples with HEA as the binder phase were successfully synthesized using high-pressure and high-temperature conditions of 8.0 GPa and 1500–1700℃. Several key performance indicators, including thermal expansion coefficient, Vickers hardness, transverse rupture strength, compressive strength, and wear resistance were measured to comprehensively evaluate the overall performance of the well-sintered HEA/PCD. The results showed that, compared with conventional cobalt/PCD, the HEA/PCD exhibited a lower thermal expansion coefficient and reduced graphitization of diamond at high temperatures above 920 K. HEA/PCD also demonstrated better mechanical properties than Co/PCD, including higher hardness, and greater transverse rupture strength and compressive strength. Moreover, over the same cutting distance against the granite block, HEA/PCD tools exhibited significantly lower wear loss than Co/PCD, indicating superior wear resistance. This study provides new insights and strategies for the design and optimization of PCD binders and PCD tools.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42114-025-01214-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-025-01214-3\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01214-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Microstructure and properties of polycrystalline diamond with AlCoCrFeNi2.1 eutectic high-entropy alloys as binder
The performance of polycrystalline diamond (PCD) tools largely depends on the adhesion and catalyzing effect of the binder phase. In this study, AlCoCrFeNi2.1 eutectic high-entropy alloy (HEA) was used as a new binder material to synthesize the PCD samples. First-principles calculations showed that the interface strength between HEA and diamond is better than that between cobalt and diamond, suggesting that the HEA/PCD combination has the potential to exhibit better properties than the conventional cobalt/PCD tools. PCD samples with HEA as the binder phase were successfully synthesized using high-pressure and high-temperature conditions of 8.0 GPa and 1500–1700℃. Several key performance indicators, including thermal expansion coefficient, Vickers hardness, transverse rupture strength, compressive strength, and wear resistance were measured to comprehensively evaluate the overall performance of the well-sintered HEA/PCD. The results showed that, compared with conventional cobalt/PCD, the HEA/PCD exhibited a lower thermal expansion coefficient and reduced graphitization of diamond at high temperatures above 920 K. HEA/PCD also demonstrated better mechanical properties than Co/PCD, including higher hardness, and greater transverse rupture strength and compressive strength. Moreover, over the same cutting distance against the granite block, HEA/PCD tools exhibited significantly lower wear loss than Co/PCD, indicating superior wear resistance. This study provides new insights and strategies for the design and optimization of PCD binders and PCD tools.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.