A. P. Franco-Bacca, I. Y. Forero-Sandoval, N. W. Pech-May, J. J. Alvarado-Gil, F. Cervantes-Alvarez
{"title":"电排列CNFs中的焦耳效应:对液体的快速加热","authors":"A. P. Franco-Bacca, I. Y. Forero-Sandoval, N. W. Pech-May, J. J. Alvarado-Gil, F. Cervantes-Alvarez","doi":"10.1007/s10765-024-03486-1","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient use of heating systems is necessary from an environmental and economic perspective. This work analyses the Joule effect and the thermal transport properties of carbon nanofibers dispersed in ethylene–glycol aligned by applying a constant AC electric field. We tested several weight fraction concentrations from 0.1 % to 1 % wt of carbon nanofibers. The evolution of temperature and electric current as a function of time was analyzed. The amount of heat generated was quantified using Joule's law equation, and we estimated the thermal conductivity as a function of the concentration before and after the voltage application. The dependence of the temperature increase on the concentration of carbon nanofibers and electric voltage was investigated. Our work explores the viability of using carbon nanofiber dispersed in ethylene glycol in developing intelligent fluids useful for heat generation and release, with applications in heat management systems, such as those used for deicing.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10765-024-03486-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Joule Effect in Electrically Aligned CNFs: Toward Fast Heating of Liquids\",\"authors\":\"A. P. Franco-Bacca, I. Y. Forero-Sandoval, N. W. Pech-May, J. J. Alvarado-Gil, F. Cervantes-Alvarez\",\"doi\":\"10.1007/s10765-024-03486-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficient use of heating systems is necessary from an environmental and economic perspective. This work analyses the Joule effect and the thermal transport properties of carbon nanofibers dispersed in ethylene–glycol aligned by applying a constant AC electric field. We tested several weight fraction concentrations from 0.1 % to 1 % wt of carbon nanofibers. The evolution of temperature and electric current as a function of time was analyzed. The amount of heat generated was quantified using Joule's law equation, and we estimated the thermal conductivity as a function of the concentration before and after the voltage application. The dependence of the temperature increase on the concentration of carbon nanofibers and electric voltage was investigated. Our work explores the viability of using carbon nanofiber dispersed in ethylene glycol in developing intelligent fluids useful for heat generation and release, with applications in heat management systems, such as those used for deicing.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"46 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10765-024-03486-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-024-03486-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03486-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Joule Effect in Electrically Aligned CNFs: Toward Fast Heating of Liquids
Efficient use of heating systems is necessary from an environmental and economic perspective. This work analyses the Joule effect and the thermal transport properties of carbon nanofibers dispersed in ethylene–glycol aligned by applying a constant AC electric field. We tested several weight fraction concentrations from 0.1 % to 1 % wt of carbon nanofibers. The evolution of temperature and electric current as a function of time was analyzed. The amount of heat generated was quantified using Joule's law equation, and we estimated the thermal conductivity as a function of the concentration before and after the voltage application. The dependence of the temperature increase on the concentration of carbon nanofibers and electric voltage was investigated. Our work explores the viability of using carbon nanofiber dispersed in ethylene glycol in developing intelligent fluids useful for heat generation and release, with applications in heat management systems, such as those used for deicing.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.