关于带反射的奇异积分算子

IF 0.8 Q2 MATHEMATICS
A. G. Kamalyan
{"title":"关于带反射的奇异积分算子","authors":"A. G. Kamalyan","doi":"10.1007/s43036-024-00416-8","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of the present paper is the investigation of matrix singular integral operators with reflection in Lebesgue spaces on the real line with Muckenhoupt weights. It is proved that these operators are matrix coupled with matrix Toeplitz operators. As a corollary, a criterion for the Fredholmness of such operators with piecewise continuous coefficients is obtained. Singular integral operators with flip and Toeplitz plus Hankel operators are also considered.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On singular integral operators with reflection\",\"authors\":\"A. G. Kamalyan\",\"doi\":\"10.1007/s43036-024-00416-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of the present paper is the investigation of matrix singular integral operators with reflection in Lebesgue spaces on the real line with Muckenhoupt weights. It is proved that these operators are matrix coupled with matrix Toeplitz operators. As a corollary, a criterion for the Fredholmness of such operators with piecewise continuous coefficients is obtained. Singular integral operators with flip and Toeplitz plus Hankel operators are also considered.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00416-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00416-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究具有Muckenhoupt权值的实线上Lebesgue空间中具有反射的矩阵奇异积分算子。证明了这些算子是矩阵耦合的矩阵Toeplitz算子。作为推论,得到了这类系数为分段连续的算子的Fredholmness判据。还考虑了带翻转算子和Toeplitz + Hankel算子的奇异积分算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On singular integral operators with reflection

The aim of the present paper is the investigation of matrix singular integral operators with reflection in Lebesgue spaces on the real line with Muckenhoupt weights. It is proved that these operators are matrix coupled with matrix Toeplitz operators. As a corollary, a criterion for the Fredholmness of such operators with piecewise continuous coefficients is obtained. Singular integral operators with flip and Toeplitz plus Hankel operators are also considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信