利用机器学习预测二硫化钼固体润滑剂性能

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Dayton J. Vogel, Tomas F. Babuska, Alexander Mings, Peter A. MacDonell, John F. Curry, Steven R. Larson, Michael T. Dugger
{"title":"利用机器学习预测二硫化钼固体润滑剂性能","authors":"Dayton J. Vogel,&nbsp;Tomas F. Babuska,&nbsp;Alexander Mings,&nbsp;Peter A. MacDonell,&nbsp;John F. Curry,&nbsp;Steven R. Larson,&nbsp;Michael T. Dugger","doi":"10.1007/s11249-024-01957-y","DOIUrl":null,"url":null,"abstract":"<div><p>Physical vapor deposited (PVD) molybdenum disulfide (MoS<sub>2</sub>) solid lubricant coatings are an exemplar material system for machine learning methods due to small changes in process variables often causing large variations in microstructure and mechanical/tribological properties. In this work, a gradient boosted regression tree machine learning method is applied to an existing experimental data set containing process, microstructure, and property information to create deeper insights into the process-structure–property relationships for molybdenum disulfide (MoS<sub>2</sub>) solid lubricant coatings. The optimized and cross-validated models show good predictive capabilities for density, reduced modulus, hardness, wear rate, and initial coefficients of friction. The contribution of individual deposition variables (i.e., argon pressure, deposition power, target conditioning) on coating properties is highlighted through feature importance. The process-property relationships established herein show linear and non-linear relationships and highlight the influence of uncontrolled deposition variables (i.e., target conditioning) on the tribological performance.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Machine Learning to Predict MoS2 Solid Lubricant Performance\",\"authors\":\"Dayton J. Vogel,&nbsp;Tomas F. Babuska,&nbsp;Alexander Mings,&nbsp;Peter A. MacDonell,&nbsp;John F. Curry,&nbsp;Steven R. Larson,&nbsp;Michael T. Dugger\",\"doi\":\"10.1007/s11249-024-01957-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Physical vapor deposited (PVD) molybdenum disulfide (MoS<sub>2</sub>) solid lubricant coatings are an exemplar material system for machine learning methods due to small changes in process variables often causing large variations in microstructure and mechanical/tribological properties. In this work, a gradient boosted regression tree machine learning method is applied to an existing experimental data set containing process, microstructure, and property information to create deeper insights into the process-structure–property relationships for molybdenum disulfide (MoS<sub>2</sub>) solid lubricant coatings. The optimized and cross-validated models show good predictive capabilities for density, reduced modulus, hardness, wear rate, and initial coefficients of friction. The contribution of individual deposition variables (i.e., argon pressure, deposition power, target conditioning) on coating properties is highlighted through feature importance. The process-property relationships established herein show linear and non-linear relationships and highlight the influence of uncontrolled deposition variables (i.e., target conditioning) on the tribological performance.</p></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01957-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01957-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

物理气相沉积(PVD)二硫化钼(MoS2)固体润滑剂涂层是机器学习方法的典型材料系统,因为工艺变量的微小变化通常会导致微观结构和机械/摩擦学性能的巨大变化。在这项工作中,梯度增强回归树机器学习方法应用于包含工艺、微观结构和性能信息的现有实验数据集,以更深入地了解二硫化钼(MoS2)固体润滑剂涂层的工艺-结构-性能关系。经过优化和交叉验证的模型对密度、降低模量、硬度、磨损率和初始摩擦系数具有良好的预测能力。单个沉积变量(即氩气压力、沉积功率、靶调节)对涂层性能的贡献通过特征重要性来突出。本文建立的工艺性能关系显示出线性和非线性关系,并突出了不受控制的沉积变量(即目标调节)对摩擦学性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing Machine Learning to Predict MoS2 Solid Lubricant Performance

Physical vapor deposited (PVD) molybdenum disulfide (MoS2) solid lubricant coatings are an exemplar material system for machine learning methods due to small changes in process variables often causing large variations in microstructure and mechanical/tribological properties. In this work, a gradient boosted regression tree machine learning method is applied to an existing experimental data set containing process, microstructure, and property information to create deeper insights into the process-structure–property relationships for molybdenum disulfide (MoS2) solid lubricant coatings. The optimized and cross-validated models show good predictive capabilities for density, reduced modulus, hardness, wear rate, and initial coefficients of friction. The contribution of individual deposition variables (i.e., argon pressure, deposition power, target conditioning) on coating properties is highlighted through feature importance. The process-property relationships established herein show linear and non-linear relationships and highlight the influence of uncontrolled deposition variables (i.e., target conditioning) on the tribological performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信