A. V. Povolotskiy, E. V. Smirnov, Yu. S. Tver’yanovich
{"title":"碳氢化合物等离子体化学分解形成类金刚石碳膜","authors":"A. V. Povolotskiy, E. V. Smirnov, Yu. S. Tver’yanovich","doi":"10.1134/S1087659624600728","DOIUrl":null,"url":null,"abstract":"<p>The process of the formation of diamond-like carbon films on the surface of monocrystalline silicon is studied. The film is formed as a result of the plasma-chemical decomposition of hydrocarbons (propane, butane) and subsequent annealing in a vacuum. The carbon film is formed in the form of diamond-like nanoparticles with a diameter of about 8 nm. Silicon–carbon bonds are formed at the boundary of the silicon substrate and the carbon film, which ensures strong adhesion.</p>","PeriodicalId":580,"journal":{"name":"Glass Physics and Chemistry","volume":"50 3","pages":"222 - 226"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of Diamond-Like Carbon Films by the Plasma-Chemical Decomposition of Hydrocarbons\",\"authors\":\"A. V. Povolotskiy, E. V. Smirnov, Yu. S. Tver’yanovich\",\"doi\":\"10.1134/S1087659624600728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The process of the formation of diamond-like carbon films on the surface of monocrystalline silicon is studied. The film is formed as a result of the plasma-chemical decomposition of hydrocarbons (propane, butane) and subsequent annealing in a vacuum. The carbon film is formed in the form of diamond-like nanoparticles with a diameter of about 8 nm. Silicon–carbon bonds are formed at the boundary of the silicon substrate and the carbon film, which ensures strong adhesion.</p>\",\"PeriodicalId\":580,\"journal\":{\"name\":\"Glass Physics and Chemistry\",\"volume\":\"50 3\",\"pages\":\"222 - 226\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glass Physics and Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1087659624600728\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Physics and Chemistry","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1087659624600728","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Formation of Diamond-Like Carbon Films by the Plasma-Chemical Decomposition of Hydrocarbons
The process of the formation of diamond-like carbon films on the surface of monocrystalline silicon is studied. The film is formed as a result of the plasma-chemical decomposition of hydrocarbons (propane, butane) and subsequent annealing in a vacuum. The carbon film is formed in the form of diamond-like nanoparticles with a diameter of about 8 nm. Silicon–carbon bonds are formed at the boundary of the silicon substrate and the carbon film, which ensures strong adhesion.
期刊介绍:
Glass Physics and Chemistry presents results of research on the inorganic and physical chemistry of glass, ceramics, nanoparticles, nanocomposites, and high-temperature oxides and coatings. The journal welcomes manuscripts from all countries in the English or Russian language.