Hua-Long Li, Zeng-Min Xue, Guang Yang, Fei Meng, Hong-Tao Lin, Wen-Xuan Zhao, Shu-Hai Chen and Chuan-Zeng Wang
{"title":"比利牛斯基,红色发光,聚集诱导发光:从结构建设到防伪应用†","authors":"Hua-Long Li, Zeng-Min Xue, Guang Yang, Fei Meng, Hong-Tao Lin, Wen-Xuan Zhao, Shu-Hai Chen and Chuan-Zeng Wang","doi":"10.1039/D4QM00927D","DOIUrl":null,"url":null,"abstract":"<p >Herein, we demonstrated a novel approach to construct pyrene-based, high-efficiency, red-emitting molecules. Both of the as-synthesized luminogens exhibited aggregation-induced enhanced emission (AIEE) properties and distinct mechanochromic behavior with a blue-shift for <strong>DCI-Py-1</strong> (13 nm) and red-shift for <strong>DCI-Py-2</strong> (29 nm). The typical, yet rare, pyrene-based, red-emitting molecules with <em>λ</em><small><sub>em</sub></small> = 686 nm open up new avenues to design near-infrared emitting pyrene-based photoelectric materials. Further studies revealed that both of these materials can be utilized for anti-counterfeiting stamps and fingerprint extraction.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 2","pages":" 318-324"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrene-based, red-emitting, aggregation-induced emission luminogens: from structural construction to anti-counterfeiting applications†\",\"authors\":\"Hua-Long Li, Zeng-Min Xue, Guang Yang, Fei Meng, Hong-Tao Lin, Wen-Xuan Zhao, Shu-Hai Chen and Chuan-Zeng Wang\",\"doi\":\"10.1039/D4QM00927D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Herein, we demonstrated a novel approach to construct pyrene-based, high-efficiency, red-emitting molecules. Both of the as-synthesized luminogens exhibited aggregation-induced enhanced emission (AIEE) properties and distinct mechanochromic behavior with a blue-shift for <strong>DCI-Py-1</strong> (13 nm) and red-shift for <strong>DCI-Py-2</strong> (29 nm). The typical, yet rare, pyrene-based, red-emitting molecules with <em>λ</em><small><sub>em</sub></small> = 686 nm open up new avenues to design near-infrared emitting pyrene-based photoelectric materials. Further studies revealed that both of these materials can be utilized for anti-counterfeiting stamps and fingerprint extraction.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 2\",\"pages\":\" 318-324\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00927d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00927d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pyrene-based, red-emitting, aggregation-induced emission luminogens: from structural construction to anti-counterfeiting applications†
Herein, we demonstrated a novel approach to construct pyrene-based, high-efficiency, red-emitting molecules. Both of the as-synthesized luminogens exhibited aggregation-induced enhanced emission (AIEE) properties and distinct mechanochromic behavior with a blue-shift for DCI-Py-1 (13 nm) and red-shift for DCI-Py-2 (29 nm). The typical, yet rare, pyrene-based, red-emitting molecules with λem = 686 nm open up new avenues to design near-infrared emitting pyrene-based photoelectric materials. Further studies revealed that both of these materials can be utilized for anti-counterfeiting stamps and fingerprint extraction.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.