Ke-Ke Chang, Wan-Feng Xiong, Yu-Ting Wen, Bin-Bin Feng, Hong-Fang Li, Teng Zhang, Yuan-Biao Huang, Duan-Hui Si and Rong Cao
{"title":"在大尺寸Cu@Ag电极†上对CO2电催化还原为碳氢化合物的协同增强作用","authors":"Ke-Ke Chang, Wan-Feng Xiong, Yu-Ting Wen, Bin-Bin Feng, Hong-Fang Li, Teng Zhang, Yuan-Biao Huang, Duan-Hui Si and Rong Cao","doi":"10.1039/D4QM00819G","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) underlies a strategic approach to energy and environmental challenges. Large-sized materials offer industrial scalability due to their simplicity and cost-effectiveness. However, traditional large-sized Cu catalysts preferentially catalyze the hydrogen evolution reaction (HER) over the CO<small><sub>2</sub></small>RR. Hence, the development of large-sized catalysts with enhanced reducibility is imperative for an efficient CO<small><sub>2</sub></small>RR. In this study, a large-sized Cu@Ag catalyst was designed using electrodeposition, which enhanced the CO<small><sub>2</sub></small>RR and suppressed the HER. The faradaic efficiency (FE) for hydrocarbons of the Cu@Ag catalyst was 59.8%, surpassing that of bare Cu nanoparticles by 21.4%. FE<small><sub>H<small><sub>2</sub></small></sub></small> was notably reduced to 31.6%, compared to 63.0% for Ag foil and 55.2% for bare Cu nanoparticles. Theoretical calculations indicated a reconfiguration of Cu 3d orbitals in the Cu@Ag catalyst. The d<small><sub><em>x</em><small><sup>2</sup></small>−<em>y</em><small><sup>2</sup></small></sub></small> orbital, being the highest occupied, modulated the affinity of CO<small><sub>2</sub></small> molecules and favored hydrocarbon formation. Additionally, the charge density at the Cu@Ag boundaries increased, facilitating C–C coupling. In particular, the C<small><sub>2</sub></small>H<small><sub>4</sub></small>/CH<small><sub>4</sub></small> ratio was enhanced by approximately 30-fold compared to using bare Cu nanoparticles. This study demonstrated that the synergistic mechanism of the Cu@Ag catalyst is key to enhancing the CO<small><sub>2</sub></small>RR and inhibiting the competing HER, thus elucidating the molecular mechanisms for the conversion of CO<small><sub>2</sub></small> into valuable chemicals using large-sized Cu-based catalysts.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 2","pages":" 271-279"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic enhancement of the electrocatalytic reduction of CO2 to hydrocarbons at a large-sized Cu@Ag electrode†\",\"authors\":\"Ke-Ke Chang, Wan-Feng Xiong, Yu-Ting Wen, Bin-Bin Feng, Hong-Fang Li, Teng Zhang, Yuan-Biao Huang, Duan-Hui Si and Rong Cao\",\"doi\":\"10.1039/D4QM00819G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The electrochemical CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) underlies a strategic approach to energy and environmental challenges. Large-sized materials offer industrial scalability due to their simplicity and cost-effectiveness. However, traditional large-sized Cu catalysts preferentially catalyze the hydrogen evolution reaction (HER) over the CO<small><sub>2</sub></small>RR. Hence, the development of large-sized catalysts with enhanced reducibility is imperative for an efficient CO<small><sub>2</sub></small>RR. In this study, a large-sized Cu@Ag catalyst was designed using electrodeposition, which enhanced the CO<small><sub>2</sub></small>RR and suppressed the HER. The faradaic efficiency (FE) for hydrocarbons of the Cu@Ag catalyst was 59.8%, surpassing that of bare Cu nanoparticles by 21.4%. FE<small><sub>H<small><sub>2</sub></small></sub></small> was notably reduced to 31.6%, compared to 63.0% for Ag foil and 55.2% for bare Cu nanoparticles. Theoretical calculations indicated a reconfiguration of Cu 3d orbitals in the Cu@Ag catalyst. The d<small><sub><em>x</em><small><sup>2</sup></small>−<em>y</em><small><sup>2</sup></small></sub></small> orbital, being the highest occupied, modulated the affinity of CO<small><sub>2</sub></small> molecules and favored hydrocarbon formation. Additionally, the charge density at the Cu@Ag boundaries increased, facilitating C–C coupling. In particular, the C<small><sub>2</sub></small>H<small><sub>4</sub></small>/CH<small><sub>4</sub></small> ratio was enhanced by approximately 30-fold compared to using bare Cu nanoparticles. This study demonstrated that the synergistic mechanism of the Cu@Ag catalyst is key to enhancing the CO<small><sub>2</sub></small>RR and inhibiting the competing HER, thus elucidating the molecular mechanisms for the conversion of CO<small><sub>2</sub></small> into valuable chemicals using large-sized Cu-based catalysts.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 2\",\"pages\":\" 271-279\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00819g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00819g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synergistic enhancement of the electrocatalytic reduction of CO2 to hydrocarbons at a large-sized Cu@Ag electrode†
The electrochemical CO2 reduction reaction (CO2RR) underlies a strategic approach to energy and environmental challenges. Large-sized materials offer industrial scalability due to their simplicity and cost-effectiveness. However, traditional large-sized Cu catalysts preferentially catalyze the hydrogen evolution reaction (HER) over the CO2RR. Hence, the development of large-sized catalysts with enhanced reducibility is imperative for an efficient CO2RR. In this study, a large-sized Cu@Ag catalyst was designed using electrodeposition, which enhanced the CO2RR and suppressed the HER. The faradaic efficiency (FE) for hydrocarbons of the Cu@Ag catalyst was 59.8%, surpassing that of bare Cu nanoparticles by 21.4%. FEH2 was notably reduced to 31.6%, compared to 63.0% for Ag foil and 55.2% for bare Cu nanoparticles. Theoretical calculations indicated a reconfiguration of Cu 3d orbitals in the Cu@Ag catalyst. The dx2−y2 orbital, being the highest occupied, modulated the affinity of CO2 molecules and favored hydrocarbon formation. Additionally, the charge density at the Cu@Ag boundaries increased, facilitating C–C coupling. In particular, the C2H4/CH4 ratio was enhanced by approximately 30-fold compared to using bare Cu nanoparticles. This study demonstrated that the synergistic mechanism of the Cu@Ag catalyst is key to enhancing the CO2RR and inhibiting the competing HER, thus elucidating the molecular mechanisms for the conversion of CO2 into valuable chemicals using large-sized Cu-based catalysts.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.