Kaiyue Song, Cong Jiang, Shaorong Huang and Xianglong Li
{"title":"外源性/内源性刺激反应纳米催化剂触发肿瘤催化治疗的原位化学反应:最新的迷你综述","authors":"Kaiyue Song, Cong Jiang, Shaorong Huang and Xianglong Li","doi":"10.1039/D4QM00833B","DOIUrl":null,"url":null,"abstract":"<p >The principle of the nanocatalytic medicine strategy is introducing nanocatalysts into tumor tissues and triggering specific chemical reactions through endogenous/exogenous stimuli to convert low/non-toxic exogenously delivered or endogenous substances into therapeutic products with high cytotoxicity. In recent years, the nanocatalytic medicine strategy has been proven to be effective in achieving tumor catalytic therapy, which is expected to reduce side effects and decrease the occurrence of drug resistance. This mini-review briefly outlines typical applications and recent advances in nanocatalyst-triggered <em>in situ</em> chemical reactions in tumor catalytic therapy. Special attention is paid to the design of nanocatalysts related to endogenous and exogenous stimuli (<em>e.g.</em>, light, heat, ultrasound, <em>etc.</em>). Finally, challenges and future opportunities for advancing nanocatalysts are highlighted to facilitate the realization of early clinical applications of nanocatalytic medicine strategies.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 2","pages":" 189-203"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous/endogenous stimuli-responsive nanocatalysts trigger in situ chemical reactions for tumor catalytic therapy: an up-to-date mini-review\",\"authors\":\"Kaiyue Song, Cong Jiang, Shaorong Huang and Xianglong Li\",\"doi\":\"10.1039/D4QM00833B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The principle of the nanocatalytic medicine strategy is introducing nanocatalysts into tumor tissues and triggering specific chemical reactions through endogenous/exogenous stimuli to convert low/non-toxic exogenously delivered or endogenous substances into therapeutic products with high cytotoxicity. In recent years, the nanocatalytic medicine strategy has been proven to be effective in achieving tumor catalytic therapy, which is expected to reduce side effects and decrease the occurrence of drug resistance. This mini-review briefly outlines typical applications and recent advances in nanocatalyst-triggered <em>in situ</em> chemical reactions in tumor catalytic therapy. Special attention is paid to the design of nanocatalysts related to endogenous and exogenous stimuli (<em>e.g.</em>, light, heat, ultrasound, <em>etc.</em>). Finally, challenges and future opportunities for advancing nanocatalysts are highlighted to facilitate the realization of early clinical applications of nanocatalytic medicine strategies.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 2\",\"pages\":\" 189-203\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00833b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00833b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exogenous/endogenous stimuli-responsive nanocatalysts trigger in situ chemical reactions for tumor catalytic therapy: an up-to-date mini-review
The principle of the nanocatalytic medicine strategy is introducing nanocatalysts into tumor tissues and triggering specific chemical reactions through endogenous/exogenous stimuli to convert low/non-toxic exogenously delivered or endogenous substances into therapeutic products with high cytotoxicity. In recent years, the nanocatalytic medicine strategy has been proven to be effective in achieving tumor catalytic therapy, which is expected to reduce side effects and decrease the occurrence of drug resistance. This mini-review briefly outlines typical applications and recent advances in nanocatalyst-triggered in situ chemical reactions in tumor catalytic therapy. Special attention is paid to the design of nanocatalysts related to endogenous and exogenous stimuli (e.g., light, heat, ultrasound, etc.). Finally, challenges and future opportunities for advancing nanocatalysts are highlighted to facilitate the realization of early clinical applications of nanocatalytic medicine strategies.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.