基于二次人工势场的高速公路自动驾驶滑模控制体系

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Elisabetta Punta;Massimo Canale;Francesco Cerrito;Valentino Razza
{"title":"基于二次人工势场的高速公路自动驾驶滑模控制体系","authors":"Elisabetta Punta;Massimo Canale;Francesco Cerrito;Valentino Razza","doi":"10.1109/LCSYS.2024.3518927","DOIUrl":null,"url":null,"abstract":"An approach for automated driving in highway scenarios based on Super-Twisting (STW) Sliding Mode Control (SMC) methodologies supported by the use of Artificial Potential Fields (APF) is presented. The use of APF allows us to propose an effective SMC solution based on the gradient tracking (GT) principle. In this regard, a novel formulation of the APF functions is introduced that exploits a sequence of attractive quadratic functions. This solution simplifies the computation of the fields and allows for trajectory generation with improved regularity properties. Extensive simulation tests, as well as comparisons with baseline and state of the art solutions, show the effectiveness of the proposed approach.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2937-2942"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804184","citationCount":"0","resultStr":"{\"title\":\"A Sliding Mode Control Architecture for Autonomous Driving in Highway Scenarios Based on Quadratic Artificial Potential Fields\",\"authors\":\"Elisabetta Punta;Massimo Canale;Francesco Cerrito;Valentino Razza\",\"doi\":\"10.1109/LCSYS.2024.3518927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach for automated driving in highway scenarios based on Super-Twisting (STW) Sliding Mode Control (SMC) methodologies supported by the use of Artificial Potential Fields (APF) is presented. The use of APF allows us to propose an effective SMC solution based on the gradient tracking (GT) principle. In this regard, a novel formulation of the APF functions is introduced that exploits a sequence of attractive quadratic functions. This solution simplifies the computation of the fields and allows for trajectory generation with improved regularity properties. Extensive simulation tests, as well as comparisons with baseline and state of the art solutions, show the effectiveness of the proposed approach.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2937-2942\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804184\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10804184/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804184/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于人工势场(APF)支持的超扭转滑模控制(SMC)方法的高速公路自动驾驶方法。APF的使用使我们能够提出基于梯度跟踪(GT)原理的有效SMC解决方案。在这方面,引入了一种新的APF函数公式,该公式利用了一系列有吸引力的二次函数。该解决方案简化了场的计算,并允许具有改进的规则性的轨迹生成。广泛的模拟测试以及与基线和最先进解决方案的比较表明,所提出的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sliding Mode Control Architecture for Autonomous Driving in Highway Scenarios Based on Quadratic Artificial Potential Fields
An approach for automated driving in highway scenarios based on Super-Twisting (STW) Sliding Mode Control (SMC) methodologies supported by the use of Artificial Potential Fields (APF) is presented. The use of APF allows us to propose an effective SMC solution based on the gradient tracking (GT) principle. In this regard, a novel formulation of the APF functions is introduced that exploits a sequence of attractive quadratic functions. This solution simplifies the computation of the fields and allows for trajectory generation with improved regularity properties. Extensive simulation tests, as well as comparisons with baseline and state of the art solutions, show the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信