{"title":"基于机械辅助机器学习的弹跳机器人逆设计","authors":"Dezhong Tong;Zhuonan Hao;Mingchao Liu;Weicheng Huang","doi":"10.1109/LRA.2024.3523218","DOIUrl":null,"url":null,"abstract":"Simulating soft robots offers a cost-effective approach to exploring their design and control strategies. While current models, such as finite element analysis, are effective in capturing soft robotic dynamics, the field still requires a broadly applicable and efficient numerical simulation method. In this letter, we introduce a discrete differential geometry-based framework for the model-based inverse design of a novel snap-actuated jumping robot. Our findings reveal that the snapping beam actuator exhibits both symmetric and asymmetric dynamic modes, enabling tunable robot trajectories (e.g., horizontal or vertical jumps). Leveraging this bistable beam as a robotic actuator, we propose a physics-data hybrid inverse design strategy to endow the snap-jump robot with a diverse range of jumping capabilities. By utilizing a physical engine to examine the effects of design parameters on jump dynamics, we then use extensive simulation data to establish a data-driven inverse design solution. This approach allows rapid exploration of parameter spaces to achieve targeted jump trajectories, providing a robust foundation for the robot's fabrication. Our methodology offers a powerful framework for advancing the design and control of soft robots through integrated simulation and data-driven techniques.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1720-1727"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Design of Snap-Actuated Jumping Robots Powered by Mechanics-Aided Machine Learning\",\"authors\":\"Dezhong Tong;Zhuonan Hao;Mingchao Liu;Weicheng Huang\",\"doi\":\"10.1109/LRA.2024.3523218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulating soft robots offers a cost-effective approach to exploring their design and control strategies. While current models, such as finite element analysis, are effective in capturing soft robotic dynamics, the field still requires a broadly applicable and efficient numerical simulation method. In this letter, we introduce a discrete differential geometry-based framework for the model-based inverse design of a novel snap-actuated jumping robot. Our findings reveal that the snapping beam actuator exhibits both symmetric and asymmetric dynamic modes, enabling tunable robot trajectories (e.g., horizontal or vertical jumps). Leveraging this bistable beam as a robotic actuator, we propose a physics-data hybrid inverse design strategy to endow the snap-jump robot with a diverse range of jumping capabilities. By utilizing a physical engine to examine the effects of design parameters on jump dynamics, we then use extensive simulation data to establish a data-driven inverse design solution. This approach allows rapid exploration of parameter spaces to achieve targeted jump trajectories, providing a robust foundation for the robot's fabrication. Our methodology offers a powerful framework for advancing the design and control of soft robots through integrated simulation and data-driven techniques.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1720-1727\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816482/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816482/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Inverse Design of Snap-Actuated Jumping Robots Powered by Mechanics-Aided Machine Learning
Simulating soft robots offers a cost-effective approach to exploring their design and control strategies. While current models, such as finite element analysis, are effective in capturing soft robotic dynamics, the field still requires a broadly applicable and efficient numerical simulation method. In this letter, we introduce a discrete differential geometry-based framework for the model-based inverse design of a novel snap-actuated jumping robot. Our findings reveal that the snapping beam actuator exhibits both symmetric and asymmetric dynamic modes, enabling tunable robot trajectories (e.g., horizontal or vertical jumps). Leveraging this bistable beam as a robotic actuator, we propose a physics-data hybrid inverse design strategy to endow the snap-jump robot with a diverse range of jumping capabilities. By utilizing a physical engine to examine the effects of design parameters on jump dynamics, we then use extensive simulation data to establish a data-driven inverse design solution. This approach allows rapid exploration of parameter spaces to achieve targeted jump trajectories, providing a robust foundation for the robot's fabrication. Our methodology offers a powerful framework for advancing the design and control of soft robots through integrated simulation and data-driven techniques.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.