面向机器人操作的变鲁棒少镜头三维视觉分割

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Dingchang Hu;Tianyu Sun;Pengwei Xie;Siang Chen;Huazhong Yang;Guijin Wang
{"title":"面向机器人操作的变鲁棒少镜头三维视觉分割","authors":"Dingchang Hu;Tianyu Sun;Pengwei Xie;Siang Chen;Huazhong Yang;Guijin Wang","doi":"10.1109/LRA.2024.3524904","DOIUrl":null,"url":null,"abstract":"Traditional affordance segmentation on 3D point cloud objects requires massive amounts of annotated training data and can only make predictions within predefined classes and affordance tasks. To overcome these limitations, we propose a variation-robust few-shot 3D affordance segmentation network (VRNet) for robotic manipulation, which requires only several affordance annotations for novel object classes and manipulation tasks. In particular, we design an orientation-tolerant feature extractor to address pose variation between support and query point cloud objects, and present a multi-scale label propagation algorithm for variation in completeness. Extensive experiments on affordance datasets show that VRNet provides the best segmentation performance compared with previous works. Moreover, experiments in real robotic scenarios demonstrate the generalization ability of our method.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1672-1679"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation-Robust Few-Shot 3D Affordance Segmentation for Robotic Manipulation\",\"authors\":\"Dingchang Hu;Tianyu Sun;Pengwei Xie;Siang Chen;Huazhong Yang;Guijin Wang\",\"doi\":\"10.1109/LRA.2024.3524904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional affordance segmentation on 3D point cloud objects requires massive amounts of annotated training data and can only make predictions within predefined classes and affordance tasks. To overcome these limitations, we propose a variation-robust few-shot 3D affordance segmentation network (VRNet) for robotic manipulation, which requires only several affordance annotations for novel object classes and manipulation tasks. In particular, we design an orientation-tolerant feature extractor to address pose variation between support and query point cloud objects, and present a multi-scale label propagation algorithm for variation in completeness. Extensive experiments on affordance datasets show that VRNet provides the best segmentation performance compared with previous works. Moreover, experiments in real robotic scenarios demonstrate the generalization ability of our method.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 2\",\"pages\":\"1672-1679\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10819648/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819648/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

传统的3D点云对象的可视性分割需要大量带注释的训练数据,并且只能在预定义的类和可视性任务中进行预测。为了克服这些限制,我们提出了一种用于机器人操作的变化鲁棒的少镜头3D可视性分割网络(VRNet),它只需要对新对象类和操作任务进行几个可视性注释。特别地,我们设计了一个方向容忍特征提取器来处理支持和查询点云对象之间的姿态变化,并提出了一种多尺度标签传播算法来处理完整性的变化。在功能数据集上的大量实验表明,VRNet提供了较好的分割性能。此外,在真实机器人场景中的实验证明了我们的方法的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variation-Robust Few-Shot 3D Affordance Segmentation for Robotic Manipulation
Traditional affordance segmentation on 3D point cloud objects requires massive amounts of annotated training data and can only make predictions within predefined classes and affordance tasks. To overcome these limitations, we propose a variation-robust few-shot 3D affordance segmentation network (VRNet) for robotic manipulation, which requires only several affordance annotations for novel object classes and manipulation tasks. In particular, we design an orientation-tolerant feature extractor to address pose variation between support and query point cloud objects, and present a multi-scale label propagation algorithm for variation in completeness. Extensive experiments on affordance datasets show that VRNet provides the best segmentation performance compared with previous works. Moreover, experiments in real robotic scenarios demonstrate the generalization ability of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信