SE(3)上约束允许正不变量集的安全车辆运动规划

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Teo Brandt;Rafael Fierro;Claus Danielson
{"title":"SE(3)上约束允许正不变量集的安全车辆运动规划","authors":"Teo Brandt;Rafael Fierro;Claus Danielson","doi":"10.1109/LCSYS.2024.3523385","DOIUrl":null,"url":null,"abstract":"This letter extends the application of the invariant set motion planner (ISMP) to space vehicles operating in <inline-formula> <tex-math>$\\mathbb {SE}\\text {(}3\\text {)} = \\mathbb {SO}\\text {(}3\\text {)} \\rtimes {\\mathbb {R}}^{3}$ </tex-math></inline-formula>, considering the quaternion representation of <inline-formula> <tex-math>$\\mathbb {SO}\\text {(}3\\text {)}$ </tex-math></inline-formula>. We provide a proof for a collision-free set by extending the concepts of configuration-space bubbles from robotics literature. We derive a constraint admissible positive invariant (CAPI) subset within the configuration-space bubble for a robust linearization of the nonlinear vehicle dynamics. The motion planner constructs a directed graph of position and orientation equilibria covering <inline-formula> <tex-math>$\\mathbb {SE}\\text {(}3\\text {)}$ </tex-math></inline-formula>. CAPI sets are constructed to verify that equilibria are connected by a feasible trajectory. Graph search is applied to determine a sequence of reference configurations, starting at an initial position-orientation and terminating at a goal position-orientation. Simulation results are included that demonstrate the safe navigation of a vehicle in the presence of an obstacle. The trajectory is shown to maintain the CAPI conditions and is therefore safe under the nonlinear translational and rotational closed-loop vehicle dynamics.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3255-3260"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safe Vehicle Motion Planning Using Constraint Admissible Positive Invariant Sets on SE(3)\",\"authors\":\"Teo Brandt;Rafael Fierro;Claus Danielson\",\"doi\":\"10.1109/LCSYS.2024.3523385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter extends the application of the invariant set motion planner (ISMP) to space vehicles operating in <inline-formula> <tex-math>$\\\\mathbb {SE}\\\\text {(}3\\\\text {)} = \\\\mathbb {SO}\\\\text {(}3\\\\text {)} \\\\rtimes {\\\\mathbb {R}}^{3}$ </tex-math></inline-formula>, considering the quaternion representation of <inline-formula> <tex-math>$\\\\mathbb {SO}\\\\text {(}3\\\\text {)}$ </tex-math></inline-formula>. We provide a proof for a collision-free set by extending the concepts of configuration-space bubbles from robotics literature. We derive a constraint admissible positive invariant (CAPI) subset within the configuration-space bubble for a robust linearization of the nonlinear vehicle dynamics. The motion planner constructs a directed graph of position and orientation equilibria covering <inline-formula> <tex-math>$\\\\mathbb {SE}\\\\text {(}3\\\\text {)}$ </tex-math></inline-formula>. CAPI sets are constructed to verify that equilibria are connected by a feasible trajectory. Graph search is applied to determine a sequence of reference configurations, starting at an initial position-orientation and terminating at a goal position-orientation. Simulation results are included that demonstrate the safe navigation of a vehicle in the presence of an obstacle. The trajectory is shown to maintain the CAPI conditions and is therefore safe under the nonlinear translational and rotational closed-loop vehicle dynamics.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"3255-3260\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816720/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816720/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

考虑到$\mathbb {SO}\text {(}3\text {)} = \mathbb {SO}\text {(}3\text {)} \rtimes {\mathbb {R}}^{3}$的四元数表示,本文将不变集合运动规划器(ISMP)的应用扩展到运行在$\mathbb {SE}\text {(}3\text{)}$中的航天飞行器。我们通过扩展机器人学文献中的构型空间气泡的概念,提供了一个无碰撞集的证明。针对非线性车辆动力学的鲁棒线性化问题,导出了构型空间泡内的约束容许正不变量子集。运动规划器构造了一个包含$\mathbb {SE}\text {(}3\text{)}$的位置和方向平衡点的有向图。构造CAPI集来验证均衡由可行轨迹连接。图搜索用于确定参考配置序列,从初始位置方向开始,到目标位置方向结束。仿真结果证明了车辆在存在障碍物时的安全导航。在非线性平移和转动闭环飞行器动力学下,该轨迹保持了CAPI条件,因此是安全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Safe Vehicle Motion Planning Using Constraint Admissible Positive Invariant Sets on SE(3)
This letter extends the application of the invariant set motion planner (ISMP) to space vehicles operating in $\mathbb {SE}\text {(}3\text {)} = \mathbb {SO}\text {(}3\text {)} \rtimes {\mathbb {R}}^{3}$ , considering the quaternion representation of $\mathbb {SO}\text {(}3\text {)}$ . We provide a proof for a collision-free set by extending the concepts of configuration-space bubbles from robotics literature. We derive a constraint admissible positive invariant (CAPI) subset within the configuration-space bubble for a robust linearization of the nonlinear vehicle dynamics. The motion planner constructs a directed graph of position and orientation equilibria covering $\mathbb {SE}\text {(}3\text {)}$ . CAPI sets are constructed to verify that equilibria are connected by a feasible trajectory. Graph search is applied to determine a sequence of reference configurations, starting at an initial position-orientation and terminating at a goal position-orientation. Simulation results are included that demonstrate the safe navigation of a vehicle in the presence of an obstacle. The trajectory is shown to maintain the CAPI conditions and is therefore safe under the nonlinear translational and rotational closed-loop vehicle dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信