{"title":"具有三个独立数据通道的并发模分多路半模基片集成波导链路","authors":"Mohamed Elsawaf;Constantine Sideris","doi":"10.1109/JMW.2024.3506285","DOIUrl":null,"url":null,"abstract":"This article introduces a three-channel half-mode substrate-integrated waveguide (HMSIW) link. The link achieves three independent channels by stacking two HMSIWs vertically, with one of them utilizing both the fundamental and the first higher-order modes (<inline-formula><tex-math>$TE_{0.50}$</tex-math></inline-formula> and <inline-formula><tex-math>$TE_{1.50}$</tex-math></inline-formula>). Methods for selective excitation of both modes with good overall cross-modal isolation are introduced and presented. Furthermore, real-time eye-diagram measurements of the link using a pseudo-random binary sequence (PRBS) and on-off keying (OOK) modulation are presented in addition to a full MATLAB simulation model of the link showing its performance under quadrature amplitude modulation (QAM). The measured 10-dB return loss (RL) BW of the channels are more than 4 GHz (12–16 GHz) for the <inline-formula><tex-math>$TE_{0.50}$</tex-math></inline-formula> modes along the two HMSIWs, and 3.6 GHz of the first higher-order mode <inline-formula><tex-math>$TE_{1.50}$</tex-math></inline-formula> (12.1–15.7 GHz), corresponding to a concurrent bandwidth of 3.6 GHz with more than 15 dB of isolation between the channels. To the best of our knowledge, this is the first demonstration of a three-channel link using HMSIWs. The structure is fabricated and measurements agree well with the electromagnetic simulations.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 1","pages":"150-159"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10795442","citationCount":"0","resultStr":"{\"title\":\"Concurrent Mode-Division Multiplexed Half-Mode Substrate-Integrated Waveguide Link With Three Independent Data Channels\",\"authors\":\"Mohamed Elsawaf;Constantine Sideris\",\"doi\":\"10.1109/JMW.2024.3506285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces a three-channel half-mode substrate-integrated waveguide (HMSIW) link. The link achieves three independent channels by stacking two HMSIWs vertically, with one of them utilizing both the fundamental and the first higher-order modes (<inline-formula><tex-math>$TE_{0.50}$</tex-math></inline-formula> and <inline-formula><tex-math>$TE_{1.50}$</tex-math></inline-formula>). Methods for selective excitation of both modes with good overall cross-modal isolation are introduced and presented. Furthermore, real-time eye-diagram measurements of the link using a pseudo-random binary sequence (PRBS) and on-off keying (OOK) modulation are presented in addition to a full MATLAB simulation model of the link showing its performance under quadrature amplitude modulation (QAM). The measured 10-dB return loss (RL) BW of the channels are more than 4 GHz (12–16 GHz) for the <inline-formula><tex-math>$TE_{0.50}$</tex-math></inline-formula> modes along the two HMSIWs, and 3.6 GHz of the first higher-order mode <inline-formula><tex-math>$TE_{1.50}$</tex-math></inline-formula> (12.1–15.7 GHz), corresponding to a concurrent bandwidth of 3.6 GHz with more than 15 dB of isolation between the channels. To the best of our knowledge, this is the first demonstration of a three-channel link using HMSIWs. The structure is fabricated and measurements agree well with the electromagnetic simulations.\",\"PeriodicalId\":93296,\"journal\":{\"name\":\"IEEE journal of microwaves\",\"volume\":\"5 1\",\"pages\":\"150-159\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10795442\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of microwaves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10795442/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10795442/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Concurrent Mode-Division Multiplexed Half-Mode Substrate-Integrated Waveguide Link With Three Independent Data Channels
This article introduces a three-channel half-mode substrate-integrated waveguide (HMSIW) link. The link achieves three independent channels by stacking two HMSIWs vertically, with one of them utilizing both the fundamental and the first higher-order modes ($TE_{0.50}$ and $TE_{1.50}$). Methods for selective excitation of both modes with good overall cross-modal isolation are introduced and presented. Furthermore, real-time eye-diagram measurements of the link using a pseudo-random binary sequence (PRBS) and on-off keying (OOK) modulation are presented in addition to a full MATLAB simulation model of the link showing its performance under quadrature amplitude modulation (QAM). The measured 10-dB return loss (RL) BW of the channels are more than 4 GHz (12–16 GHz) for the $TE_{0.50}$ modes along the two HMSIWs, and 3.6 GHz of the first higher-order mode $TE_{1.50}$ (12.1–15.7 GHz), corresponding to a concurrent bandwidth of 3.6 GHz with more than 15 dB of isolation between the channels. To the best of our knowledge, this is the first demonstration of a three-channel link using HMSIWs. The structure is fabricated and measurements agree well with the electromagnetic simulations.