假新闻云中的一线希望:大型语言模型能帮助检测错误信息吗?

Raghvendra Kumar;Bhargav Goddu;Sriparna Saha;Adam Jatowt
{"title":"假新闻云中的一线希望:大型语言模型能帮助检测错误信息吗?","authors":"Raghvendra Kumar;Bhargav Goddu;Sriparna Saha;Adam Jatowt","doi":"10.1109/TAI.2024.3440248","DOIUrl":null,"url":null,"abstract":"In the times of advanced generative artificial intelligence, distinguishing truth from fallacy and deception has become a critical societal challenge. This research attempts to analyze the capabilities of large language models (LLMs) for detecting misinformation. Our study employs a versatile approach, covering multiple LLMs with few- and zero-shot prompting. These models are rigorously evaluated across various fake news and rumor detection datasets. Introducing a novel dimension, we additionally incorporate sentiment and emotion annotations to understand the emotional influence on misinformation detection using LLMs. Moreover, to extend our inquiry, we employ ChatGPT to intentionally distort authentic news as well as human-written fake news, utilizing zero-shot and iterative prompts. This deliberate corruption allows for a detailed examination of various parameters such as abstractness, concreteness, and named entity density, providing insights into differentiating between unaltered news, human-written fake news, and its LLM-corrupted counterpart. Our findings aspire to furnish a refined framework for discerning authentic news, human-generated misinformation, and LLM-induced distortions. This multifaceted approach, utilizing various prompt techniques, contributes to a comprehensive understanding of the subtle variations shaping misinformation sources.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 1","pages":"14-24"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silver Lining in the Fake News Cloud: Can Large Language Models Help Detect Misinformation?\",\"authors\":\"Raghvendra Kumar;Bhargav Goddu;Sriparna Saha;Adam Jatowt\",\"doi\":\"10.1109/TAI.2024.3440248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the times of advanced generative artificial intelligence, distinguishing truth from fallacy and deception has become a critical societal challenge. This research attempts to analyze the capabilities of large language models (LLMs) for detecting misinformation. Our study employs a versatile approach, covering multiple LLMs with few- and zero-shot prompting. These models are rigorously evaluated across various fake news and rumor detection datasets. Introducing a novel dimension, we additionally incorporate sentiment and emotion annotations to understand the emotional influence on misinformation detection using LLMs. Moreover, to extend our inquiry, we employ ChatGPT to intentionally distort authentic news as well as human-written fake news, utilizing zero-shot and iterative prompts. This deliberate corruption allows for a detailed examination of various parameters such as abstractness, concreteness, and named entity density, providing insights into differentiating between unaltered news, human-written fake news, and its LLM-corrupted counterpart. Our findings aspire to furnish a refined framework for discerning authentic news, human-generated misinformation, and LLM-induced distortions. This multifaceted approach, utilizing various prompt techniques, contributes to a comprehensive understanding of the subtle variations shaping misinformation sources.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"6 1\",\"pages\":\"14-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10631663/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10631663/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在先进的生成式人工智能时代,区分真理与谬误和欺骗已成为一项关键的社会挑战。本研究试图分析大型语言模型(llm)检测错误信息的能力。我们的研究采用了一种通用的方法,涵盖了多个llm与很少和零射击提示。这些模型经过各种假新闻和谣言检测数据集的严格评估。引入一个新的维度,我们还结合了情感和情感注释来理解情感对llm错误信息检测的影响。此外,为了扩大我们的调查范围,我们使用ChatGPT故意歪曲真实新闻和人工编写的假新闻,利用零射击和迭代提示。这种故意的破坏允许对各种参数进行详细检查,例如抽象性、具体性和命名实体密度,从而提供了区分未经修改的新闻、人工编写的假新闻和其llm破坏的对应内容的见解。我们的研究结果旨在为辨别真实新闻、人为错误信息和法学硕士引起的扭曲提供一个精细的框架。这种多方面的方法,利用各种提示技术,有助于全面了解塑造错误信息源的微妙变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Silver Lining in the Fake News Cloud: Can Large Language Models Help Detect Misinformation?
In the times of advanced generative artificial intelligence, distinguishing truth from fallacy and deception has become a critical societal challenge. This research attempts to analyze the capabilities of large language models (LLMs) for detecting misinformation. Our study employs a versatile approach, covering multiple LLMs with few- and zero-shot prompting. These models are rigorously evaluated across various fake news and rumor detection datasets. Introducing a novel dimension, we additionally incorporate sentiment and emotion annotations to understand the emotional influence on misinformation detection using LLMs. Moreover, to extend our inquiry, we employ ChatGPT to intentionally distort authentic news as well as human-written fake news, utilizing zero-shot and iterative prompts. This deliberate corruption allows for a detailed examination of various parameters such as abstractness, concreteness, and named entity density, providing insights into differentiating between unaltered news, human-written fake news, and its LLM-corrupted counterpart. Our findings aspire to furnish a refined framework for discerning authentic news, human-generated misinformation, and LLM-induced distortions. This multifaceted approach, utilizing various prompt techniques, contributes to a comprehensive understanding of the subtle variations shaping misinformation sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信