Yuxian Zhang;Yilin Kang;Naixing Feng;Xiaoli Feng;Zhixiang Huang;Atef Z. Elsherbeni
{"title":"多层各向异性介质时域有限差分法中的比例压缩技术","authors":"Yuxian Zhang;Yilin Kang;Naixing Feng;Xiaoli Feng;Zhixiang Huang;Atef Z. Elsherbeni","doi":"10.1109/JMMCT.2024.3524598","DOIUrl":null,"url":null,"abstract":"In this article, to breakthrough the constraint from conventional finite-difference time-domain (FDTD) method, we firstly propose a scale-compressed technique (SCT) working for the FDTD method, been called SCT-FDTD for short, to reduce three-dimensional (3-D) into one-dimensional (1-D) processes and capture the propagation coefficients. Combining with Maxwell's curl equations, the transverse wave vectors (<italic>k<sub>x</sub></i>, <italic>k<sub>y</sub></i>) can be defined as the fixed values, which let the curl operator become the curl matrix with only <italic>z</i>-directional derivative. The obvious advantage demonstrated by above is that it does not require excessive computational processes to obtain high-dimensional numerical results with reasonable accuracy. By comparing with commercial software COMSOL by the TE/TM illumination in multi-layered biaxial anisotropy, those results from SCT-FDTD method are entirely consistent. More importantly, the SCT-FDTD possesses less CPU time and lower computational resources for COMSOL.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"10 ","pages":"85-93"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media\",\"authors\":\"Yuxian Zhang;Yilin Kang;Naixing Feng;Xiaoli Feng;Zhixiang Huang;Atef Z. Elsherbeni\",\"doi\":\"10.1109/JMMCT.2024.3524598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, to breakthrough the constraint from conventional finite-difference time-domain (FDTD) method, we firstly propose a scale-compressed technique (SCT) working for the FDTD method, been called SCT-FDTD for short, to reduce three-dimensional (3-D) into one-dimensional (1-D) processes and capture the propagation coefficients. Combining with Maxwell's curl equations, the transverse wave vectors (<italic>k<sub>x</sub></i>, <italic>k<sub>y</sub></i>) can be defined as the fixed values, which let the curl operator become the curl matrix with only <italic>z</i>-directional derivative. The obvious advantage demonstrated by above is that it does not require excessive computational processes to obtain high-dimensional numerical results with reasonable accuracy. By comparing with commercial software COMSOL by the TE/TM illumination in multi-layered biaxial anisotropy, those results from SCT-FDTD method are entirely consistent. More importantly, the SCT-FDTD possesses less CPU time and lower computational resources for COMSOL.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"10 \",\"pages\":\"85-93\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10819298/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10819298/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media
In this article, to breakthrough the constraint from conventional finite-difference time-domain (FDTD) method, we firstly propose a scale-compressed technique (SCT) working for the FDTD method, been called SCT-FDTD for short, to reduce three-dimensional (3-D) into one-dimensional (1-D) processes and capture the propagation coefficients. Combining with Maxwell's curl equations, the transverse wave vectors (kx, ky) can be defined as the fixed values, which let the curl operator become the curl matrix with only z-directional derivative. The obvious advantage demonstrated by above is that it does not require excessive computational processes to obtain high-dimensional numerical results with reasonable accuracy. By comparing with commercial software COMSOL by the TE/TM illumination in multi-layered biaxial anisotropy, those results from SCT-FDTD method are entirely consistent. More importantly, the SCT-FDTD possesses less CPU time and lower computational resources for COMSOL.