揭示高度分散的Ni和Ni纳米颗粒之间的光促进协同作用,用于有效的光热催化纤维素蒸汽转化为合成气

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mengqi Zhong, Yuanzhi Li, Jichun Wu, Cong Ji, Qing Du, Qianqian Hu and Lei Ji
{"title":"揭示高度分散的Ni和Ni纳米颗粒之间的光促进协同作用,用于有效的光热催化纤维素蒸汽转化为合成气","authors":"Mengqi Zhong, Yuanzhi Li, Jichun Wu, Cong Ji, Qing Du, Qianqian Hu and Lei Ji","doi":"10.1039/D4TA09022E","DOIUrl":null,"url":null,"abstract":"<p >As a sustainable strategy for renewable biomass conversion to green syngas (H<small><sub>2</sub></small> and CO), photothermocatalytic cellulose steam reforming encounters arduous challenges, including high byproduct selectivities, low efficiency, and susceptibility to deactivation. Herein, we report a photothermocatalyst (10Ni/MgO<small><sub>ET</sub></small>) with suitable dual-site composition of highly dispersed Ni and Ni nanoparticles (NPs) for the breakdown of complex byproducts. It achieved an optimized photothermocatalytic production rate of syngas (<em>r</em><small><sub>H<small><sub>2</sub></small></sub></small> of 4986.6 mmol g<small><sub>catalyst</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>, <em>r</em><small><sub>CO</sub></small> of 2752.7 mmol g<small><sub>catalyst</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>) and light-to-fuel efficiency (8.3%) among the photocatalysts and photothermocatalysts reported so far. Characterization results revealed that the enhanced photothermocatalytic activity is due to a remarkable synergy in H<small><sub>2</sub></small>O dissociation to O* by highly dispersed Ni sites and tar cracking by Ni NPs. In particular, photoactivation promotes the synergy by accelerating H<small><sub>2</sub></small>O dissociation to O* (with release of H<small><sub>2</sub></small>) and O* activation, thus enhancing the conversion of tar to syngas and preventing the deactivation caused by char encapsulation. Thus, these findings offer an excellent strategy and insightful mechanistic understanding of photothermocatalytic syngas production.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 8","pages":" 5670-5683"},"PeriodicalIF":9.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the light-promoted synergy between highly dispersed Ni and Ni nanoparticles for efficient photothermocatalytic cellulose steam reforming to syngas†\",\"authors\":\"Mengqi Zhong, Yuanzhi Li, Jichun Wu, Cong Ji, Qing Du, Qianqian Hu and Lei Ji\",\"doi\":\"10.1039/D4TA09022E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As a sustainable strategy for renewable biomass conversion to green syngas (H<small><sub>2</sub></small> and CO), photothermocatalytic cellulose steam reforming encounters arduous challenges, including high byproduct selectivities, low efficiency, and susceptibility to deactivation. Herein, we report a photothermocatalyst (10Ni/MgO<small><sub>ET</sub></small>) with suitable dual-site composition of highly dispersed Ni and Ni nanoparticles (NPs) for the breakdown of complex byproducts. It achieved an optimized photothermocatalytic production rate of syngas (<em>r</em><small><sub>H<small><sub>2</sub></small></sub></small> of 4986.6 mmol g<small><sub>catalyst</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>, <em>r</em><small><sub>CO</sub></small> of 2752.7 mmol g<small><sub>catalyst</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>) and light-to-fuel efficiency (8.3%) among the photocatalysts and photothermocatalysts reported so far. Characterization results revealed that the enhanced photothermocatalytic activity is due to a remarkable synergy in H<small><sub>2</sub></small>O dissociation to O* by highly dispersed Ni sites and tar cracking by Ni NPs. In particular, photoactivation promotes the synergy by accelerating H<small><sub>2</sub></small>O dissociation to O* (with release of H<small><sub>2</sub></small>) and O* activation, thus enhancing the conversion of tar to syngas and preventing the deactivation caused by char encapsulation. Thus, these findings offer an excellent strategy and insightful mechanistic understanding of photothermocatalytic syngas production.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 8\",\"pages\":\" 5670-5683\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta09022e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta09022e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

作为可再生生物质转化为绿色合成气(H2和CO)的可持续发展策略,光热催化纤维素蒸汽重整面临着副产物选择性高、效率低、易失活等严峻挑战。在此,我们报道了一种光热催化剂(10Ni/MgOET),用于建立合适的高分散Ni和Ni纳米颗粒(NPs)的双位点组成,以分解副产物的电阻。实现了目前报道的光催化和光热催化中合成气的最佳光热催化产率(rH2为4986.6 mmol g-1催化剂h-1, rCO为2752.7 mmol g-1催化剂h-1)和光燃料效率(8.3%)。机理的深入表征表明,光热催化活性的增强是由于高度分散的Ni位点在H2O解离成O*和Ni NPs裂解焦油中的显著协同作用。特别是光活化通过加速H2O解离成O*(同时释放H2)和O*活化来促进协同作用,从而促进焦油向合成气的转化,防止炭包封引起的失活。这些发现为光热催化合成气生产提供了一个极好的策略和深刻的机理理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling the light-promoted synergy between highly dispersed Ni and Ni nanoparticles for efficient photothermocatalytic cellulose steam reforming to syngas†

Unraveling the light-promoted synergy between highly dispersed Ni and Ni nanoparticles for efficient photothermocatalytic cellulose steam reforming to syngas†

As a sustainable strategy for renewable biomass conversion to green syngas (H2 and CO), photothermocatalytic cellulose steam reforming encounters arduous challenges, including high byproduct selectivities, low efficiency, and susceptibility to deactivation. Herein, we report a photothermocatalyst (10Ni/MgOET) with suitable dual-site composition of highly dispersed Ni and Ni nanoparticles (NPs) for the breakdown of complex byproducts. It achieved an optimized photothermocatalytic production rate of syngas (rH2 of 4986.6 mmol gcatalyst−1 h−1, rCO of 2752.7 mmol gcatalyst−1 h−1) and light-to-fuel efficiency (8.3%) among the photocatalysts and photothermocatalysts reported so far. Characterization results revealed that the enhanced photothermocatalytic activity is due to a remarkable synergy in H2O dissociation to O* by highly dispersed Ni sites and tar cracking by Ni NPs. In particular, photoactivation promotes the synergy by accelerating H2O dissociation to O* (with release of H2) and O* activation, thus enhancing the conversion of tar to syngas and preventing the deactivation caused by char encapsulation. Thus, these findings offer an excellent strategy and insightful mechanistic understanding of photothermocatalytic syngas production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信