二维氧溴化锑直接部分转化为卤化物包晶石异质结构,实现高效二氧化碳光电还原

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-14 DOI:10.1002/smll.202409909
Su-Xian Yuan, Ke Su, Meng-Ran Zhang, You-Xiang Feng, Yu Li, Min Zhang, Tong-Bu Lu
{"title":"二维氧溴化锑直接部分转化为卤化物包晶石异质结构,实现高效二氧化碳光电还原","authors":"Su-Xian Yuan,&nbsp;Ke Su,&nbsp;Meng-Ran Zhang,&nbsp;You-Xiang Feng,&nbsp;Yu Li,&nbsp;Min Zhang,&nbsp;Tong-Bu Lu","doi":"10.1002/smll.202409909","DOIUrl":null,"url":null,"abstract":"<p>The photocatalytic activity of lead-free perovskite heterostructures currently suffers from low efficiency due to the lack of active sites and the inadequate photogenerated carrier separation, the latter of which is hindered by slow charge transfer at the heterostructure interfaces. Herein, a facile strategy is reported for the construction of lead-free halide-perovskite-based heterostructure with swift interfacial charge transfer, achieved through direct partial conversion of 2D antimony oxybromide Sb<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> to generate Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/Sb<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> heterostructure. Compared to the traditional electrostatic self-assembly method, this approach endows the Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/Sb<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> heterostructure with a tightly interconnected interface through in situ partial conversion, significantly accelerating interfacial charge transfer and thereby enhancing the separation efficiency of photogenerated carriers. The cobalt-doped Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/Sb<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> heterostructure demonstrates a record-high electron consumption rate of 840 µmol g<sup>−1</sup> h<sup>−1</sup> for photocatalytic CO<sub>2</sub> reduction to CO coupled with H<sub>2</sub>O oxidation to O<sub>2</sub>, which is over 74- and 16-fold higher than that of individual Sb<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> and Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>, respectively. This work provides an effective strategy for promoting charge separation in photocatalysts to improve the performance of artificial photosynthesis.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 8","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Partial Transformation of 2D Antimony Oxybromide to Halide Perovskite Heterostructure for Efficient CO2 Photoreduction\",\"authors\":\"Su-Xian Yuan,&nbsp;Ke Su,&nbsp;Meng-Ran Zhang,&nbsp;You-Xiang Feng,&nbsp;Yu Li,&nbsp;Min Zhang,&nbsp;Tong-Bu Lu\",\"doi\":\"10.1002/smll.202409909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The photocatalytic activity of lead-free perovskite heterostructures currently suffers from low efficiency due to the lack of active sites and the inadequate photogenerated carrier separation, the latter of which is hindered by slow charge transfer at the heterostructure interfaces. Herein, a facile strategy is reported for the construction of lead-free halide-perovskite-based heterostructure with swift interfacial charge transfer, achieved through direct partial conversion of 2D antimony oxybromide Sb<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> to generate Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/Sb<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> heterostructure. Compared to the traditional electrostatic self-assembly method, this approach endows the Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/Sb<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> heterostructure with a tightly interconnected interface through in situ partial conversion, significantly accelerating interfacial charge transfer and thereby enhancing the separation efficiency of photogenerated carriers. The cobalt-doped Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>/Sb<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> heterostructure demonstrates a record-high electron consumption rate of 840 µmol g<sup>−1</sup> h<sup>−1</sup> for photocatalytic CO<sub>2</sub> reduction to CO coupled with H<sub>2</sub>O oxidation to O<sub>2</sub>, which is over 74- and 16-fold higher than that of individual Sb<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> and Cs<sub>3</sub>Sb<sub>2</sub>Br<sub>9</sub>, respectively. This work provides an effective strategy for promoting charge separation in photocatalysts to improve the performance of artificial photosynthesis.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 8\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409909\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409909","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前,无铅钙钛矿异质结构的光催化活性由于缺乏活性位点和光生载流子分离不充分而效率低下,后者受到异质结构界面处电荷转移缓慢的阻碍。本文报道了一种构建具有快速界面电荷转移的无铅卤化物-钙钛矿基异质结构的简单策略,通过直接部分转化2D氧化溴化锑Sb4O5Br2来生成Cs3Sb2Br9/Sb4O5Br2异质结构。与传统的静电自组装方法相比,该方法通过原位部分转化使Cs3Sb2Br9/Sb4O5Br2异质结构具有紧密连接的界面,显著加快了界面电荷转移,从而提高了光生载流子的分离效率。钴掺杂的Cs3Sb2Br9/Sb4O5Br2异质结构在光催化CO2还原成CO和H2O氧化成O2的过程中具有840µmol g−1 h−1的高电子消耗速率,分别比单独的Sb4O5Br2和Cs3Sb2Br9高74倍和16倍以上。本研究为促进光催化剂的电荷分离以提高人工光合作用性能提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Direct Partial Transformation of 2D Antimony Oxybromide to Halide Perovskite Heterostructure for Efficient CO2 Photoreduction

Direct Partial Transformation of 2D Antimony Oxybromide to Halide Perovskite Heterostructure for Efficient CO2 Photoreduction

Direct Partial Transformation of 2D Antimony Oxybromide to Halide Perovskite Heterostructure for Efficient CO2 Photoreduction

The photocatalytic activity of lead-free perovskite heterostructures currently suffers from low efficiency due to the lack of active sites and the inadequate photogenerated carrier separation, the latter of which is hindered by slow charge transfer at the heterostructure interfaces. Herein, a facile strategy is reported for the construction of lead-free halide-perovskite-based heterostructure with swift interfacial charge transfer, achieved through direct partial conversion of 2D antimony oxybromide Sb4O5Br2 to generate Cs3Sb2Br9/Sb4O5Br2 heterostructure. Compared to the traditional electrostatic self-assembly method, this approach endows the Cs3Sb2Br9/Sb4O5Br2 heterostructure with a tightly interconnected interface through in situ partial conversion, significantly accelerating interfacial charge transfer and thereby enhancing the separation efficiency of photogenerated carriers. The cobalt-doped Cs3Sb2Br9/Sb4O5Br2 heterostructure demonstrates a record-high electron consumption rate of 840 µmol g−1 h−1 for photocatalytic CO2 reduction to CO coupled with H2O oxidation to O2, which is over 74- and 16-fold higher than that of individual Sb4O5Br2 and Cs3Sb2Br9, respectively. This work provides an effective strategy for promoting charge separation in photocatalysts to improve the performance of artificial photosynthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信