范德瓦尔斯间隙支持 MoS2 浮栅存储器的稳健保持,实现逻辑内存操作

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wencheng Niu, Xuming Zou, Lin Tang, Tong Bu, Sen Zhang, Bei Jiang, Mengli Dang, Xitong Hong, Chao Ma, Penghui He, Peng Zhou, Xingqiang Liu, Lei Liao
{"title":"范德瓦尔斯间隙支持 MoS2 浮栅存储器的稳健保持,实现逻辑内存操作","authors":"Wencheng Niu, Xuming Zou, Lin Tang, Tong Bu, Sen Zhang, Bei Jiang, Mengli Dang, Xitong Hong, Chao Ma, Penghui He, Peng Zhou, Xingqiang Liu, Lei Liao","doi":"10.1002/adfm.202422120","DOIUrl":null,"url":null,"abstract":"Floating gate (FG) memory can store data for decades without a power supply. Herein, high-performance MoS<sub>2</sub> FG transistors with stable operations are demonstrated, in which a van der Waals (vdW) gap is constructed between tunnelling oxide layer and channel to prevent the leakage. The atomic FG structure is one-step formed from HfS<sub>2</sub> flake by ozone treatment while the supersaturated oxygen at the interface affords to the vdW gap. The vdW gap MoS<sub>2</sub> FG transistors exhibit stable operations after 21 days, ultralow leakage current (0.1 fA µm<sup>−1</sup>), excellent retention capability &gt;10<sup>5</sup> s, high on/off ratio of 10<sup>7</sup>, and desirable cycling endurance performance (&gt;1000 cycles). Configurable logic-in-memory devices are accomplished with multi-gated structures through multi-level programming operations, which is modulated by different electrostatic potential on the FG stack. NAND and NOR output logic sequences are generated. The designed FG memory is promising for developing in-memory computing systems.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"74 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Van der Waals Gap Enabled Robust Retention of MoS2 Floating-Gate Memory for Logic-In-Memory Operations\",\"authors\":\"Wencheng Niu, Xuming Zou, Lin Tang, Tong Bu, Sen Zhang, Bei Jiang, Mengli Dang, Xitong Hong, Chao Ma, Penghui He, Peng Zhou, Xingqiang Liu, Lei Liao\",\"doi\":\"10.1002/adfm.202422120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floating gate (FG) memory can store data for decades without a power supply. Herein, high-performance MoS<sub>2</sub> FG transistors with stable operations are demonstrated, in which a van der Waals (vdW) gap is constructed between tunnelling oxide layer and channel to prevent the leakage. The atomic FG structure is one-step formed from HfS<sub>2</sub> flake by ozone treatment while the supersaturated oxygen at the interface affords to the vdW gap. The vdW gap MoS<sub>2</sub> FG transistors exhibit stable operations after 21 days, ultralow leakage current (0.1 fA µm<sup>−1</sup>), excellent retention capability &gt;10<sup>5</sup> s, high on/off ratio of 10<sup>7</sup>, and desirable cycling endurance performance (&gt;1000 cycles). Configurable logic-in-memory devices are accomplished with multi-gated structures through multi-level programming operations, which is modulated by different electrostatic potential on the FG stack. NAND and NOR output logic sequences are generated. The designed FG memory is promising for developing in-memory computing systems.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202422120\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202422120","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Van der Waals Gap Enabled Robust Retention of MoS2 Floating-Gate Memory for Logic-In-Memory Operations

Van der Waals Gap Enabled Robust Retention of MoS2 Floating-Gate Memory for Logic-In-Memory Operations
Floating gate (FG) memory can store data for decades without a power supply. Herein, high-performance MoS2 FG transistors with stable operations are demonstrated, in which a van der Waals (vdW) gap is constructed between tunnelling oxide layer and channel to prevent the leakage. The atomic FG structure is one-step formed from HfS2 flake by ozone treatment while the supersaturated oxygen at the interface affords to the vdW gap. The vdW gap MoS2 FG transistors exhibit stable operations after 21 days, ultralow leakage current (0.1 fA µm−1), excellent retention capability >105 s, high on/off ratio of 107, and desirable cycling endurance performance (>1000 cycles). Configurable logic-in-memory devices are accomplished with multi-gated structures through multi-level programming operations, which is modulated by different electrostatic potential on the FG stack. NAND and NOR output logic sequences are generated. The designed FG memory is promising for developing in-memory computing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信