Aprajita Joshi, Sajid Saikia, Shalini Badola, Angshuman Nag, Surajit Saha
{"title":"卤化物双钙钛矿中缺陷介导的电子-声子耦合","authors":"Aprajita Joshi, Sajid Saikia, Shalini Badola, Angshuman Nag, Surajit Saha","doi":"10.1063/5.0244296","DOIUrl":null,"url":null,"abstract":"Optically active defects often play a crucial role in governing the light emission as well as the electronic properties of materials. Moreover, defect-mediated states in the midgap region can trap electrons, thus opening a path for the recombination of electrons and holes in lower energy states that may require phonons in the process. Considering this, we have probed electron–phonon interaction in halide perovskite systems with the introduction of defects and investigated the thermal effect on this interaction. Here, we report Raman spectroscopic study of the thermal evolution of electron–phonon coupling, which is tunable with the crystal growth conditions, in the halide perovskite systems Cs2AgInCl6 and Cs2NaInCl6. The signature of electron–phonon coupling is observed as a Fano anomaly in the lowest frequency phonon mode (51 cm−1), which evolves with temperature. In addition, we observe a broad band in the photoluminescence (PL) measurements for the defect-mediated systems, which is otherwise absent in defect-free halide perovskite. The simultaneous observation of the Fano anomaly in the Raman spectrum and the emergence of the PL band suggests the defect-mediated midgap states and the consequent existence of electron–phonon coupling in the double perovskite.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"22 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect-mediated electron–phonon coupling in halide double perovskite\",\"authors\":\"Aprajita Joshi, Sajid Saikia, Shalini Badola, Angshuman Nag, Surajit Saha\",\"doi\":\"10.1063/5.0244296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optically active defects often play a crucial role in governing the light emission as well as the electronic properties of materials. Moreover, defect-mediated states in the midgap region can trap electrons, thus opening a path for the recombination of electrons and holes in lower energy states that may require phonons in the process. Considering this, we have probed electron–phonon interaction in halide perovskite systems with the introduction of defects and investigated the thermal effect on this interaction. Here, we report Raman spectroscopic study of the thermal evolution of electron–phonon coupling, which is tunable with the crystal growth conditions, in the halide perovskite systems Cs2AgInCl6 and Cs2NaInCl6. The signature of electron–phonon coupling is observed as a Fano anomaly in the lowest frequency phonon mode (51 cm−1), which evolves with temperature. In addition, we observe a broad band in the photoluminescence (PL) measurements for the defect-mediated systems, which is otherwise absent in defect-free halide perovskite. The simultaneous observation of the Fano anomaly in the Raman spectrum and the emergence of the PL band suggests the defect-mediated midgap states and the consequent existence of electron–phonon coupling in the double perovskite.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0244296\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0244296","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Defect-mediated electron–phonon coupling in halide double perovskite
Optically active defects often play a crucial role in governing the light emission as well as the electronic properties of materials. Moreover, defect-mediated states in the midgap region can trap electrons, thus opening a path for the recombination of electrons and holes in lower energy states that may require phonons in the process. Considering this, we have probed electron–phonon interaction in halide perovskite systems with the introduction of defects and investigated the thermal effect on this interaction. Here, we report Raman spectroscopic study of the thermal evolution of electron–phonon coupling, which is tunable with the crystal growth conditions, in the halide perovskite systems Cs2AgInCl6 and Cs2NaInCl6. The signature of electron–phonon coupling is observed as a Fano anomaly in the lowest frequency phonon mode (51 cm−1), which evolves with temperature. In addition, we observe a broad band in the photoluminescence (PL) measurements for the defect-mediated systems, which is otherwise absent in defect-free halide perovskite. The simultaneous observation of the Fano anomaly in the Raman spectrum and the emergence of the PL band suggests the defect-mediated midgap states and the consequent existence of electron–phonon coupling in the double perovskite.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.