{"title":"非厄米光子系统中连续体的拓扑束缚态","authors":"Yihao Luo, Xiankai Sun","doi":"10.1515/nanoph-2024-0419","DOIUrl":null,"url":null,"abstract":"Topological insulators and bound states in the continuum represent two fascinating topics in the optical and photonic domain. The exploration of their interconnection and potential applications has emerged as a current research focus. Here, we investigated non-Hermitian photonics based on a parallel cascaded-resonator system, where both direct and indirect coupling between adjacent resonators can be independently manipulated. We observed the emergence of topological Fabry−Pérot bound states in the continuum in this non-Hermitian system, and theoretically validated its robustness. We also observed topological phase transitions and exceptional points in the same system. By elucidating the relationship between topological insulators and bound states in the continuum, this work will enable various applications that harness the advantages of bound states in the continuum, exceptional points, and topology. These applications may include optical delay and storage, highly robust optical devices, high-sensitivity sensing, and chiral mode switching.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"17 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological bound states in the continuum in a non-Hermitian photonic system\",\"authors\":\"Yihao Luo, Xiankai Sun\",\"doi\":\"10.1515/nanoph-2024-0419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological insulators and bound states in the continuum represent two fascinating topics in the optical and photonic domain. The exploration of their interconnection and potential applications has emerged as a current research focus. Here, we investigated non-Hermitian photonics based on a parallel cascaded-resonator system, where both direct and indirect coupling between adjacent resonators can be independently manipulated. We observed the emergence of topological Fabry−Pérot bound states in the continuum in this non-Hermitian system, and theoretically validated its robustness. We also observed topological phase transitions and exceptional points in the same system. By elucidating the relationship between topological insulators and bound states in the continuum, this work will enable various applications that harness the advantages of bound states in the continuum, exceptional points, and topology. These applications may include optical delay and storage, highly robust optical devices, high-sensitivity sensing, and chiral mode switching.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0419\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0419","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Topological bound states in the continuum in a non-Hermitian photonic system
Topological insulators and bound states in the continuum represent two fascinating topics in the optical and photonic domain. The exploration of their interconnection and potential applications has emerged as a current research focus. Here, we investigated non-Hermitian photonics based on a parallel cascaded-resonator system, where both direct and indirect coupling between adjacent resonators can be independently manipulated. We observed the emergence of topological Fabry−Pérot bound states in the continuum in this non-Hermitian system, and theoretically validated its robustness. We also observed topological phase transitions and exceptional points in the same system. By elucidating the relationship between topological insulators and bound states in the continuum, this work will enable various applications that harness the advantages of bound states in the continuum, exceptional points, and topology. These applications may include optical delay and storage, highly robust optical devices, high-sensitivity sensing, and chiral mode switching.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.