利用纳米丛林结构增强黑硅的超疏水稳健性

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-01-14 DOI:10.1039/d4nr04226c
Lingju Meng, Mohammad Awashra, Seyed Mehran Mirmohammadi, Maryam Mousavi, Jaana Vapaavuori, Ville Jokinen, Sami Franssila
{"title":"利用纳米丛林结构增强黑硅的超疏水稳健性","authors":"Lingju Meng, Mohammad Awashra, Seyed Mehran Mirmohammadi, Maryam Mousavi, Jaana Vapaavuori, Ville Jokinen, Sami Franssila","doi":"10.1039/d4nr04226c","DOIUrl":null,"url":null,"abstract":"Superhydrophobic surfaces are essential in various industries such as textiles, aviation, electronics and biomedical devices due to their exceptional water-repellent properties. Black silicon (b-Si) would be an ideal candidate for some applications due to its nanoscale topography made with a convenient lithography-free step and Complementary Metal-Oxide-Semiconductor (CMOS) compatible fabrication process. However, its use is hindered by serious issues with mechanical robustness. This study presents ‘nanojungle b-Si,’ characterized by elongated and deep nanostructures and fabricated through photoresist micromasks associating with Bosch etching. These nanojungle structures exhibit enhanced robustness and sustain superhydrophobicity under abrasive conditions, outperforming traditional ‘nanograss b-Si.’ Optical analysis indicates that the nanojungle structures dissipate abrasive impact energy more effectively, preserving surface roughness and hydrophobicity. Notably, nanojungle b-Si maintains its superhydrophobicity even after impinging by 20 g of sand impacting from a height of 40 cm. This advancement in b-Si surfaces holds significant potential for enhancing future technological applications.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"76 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced superhydrophobic robustness of black silicon employing nanojungle structures\",\"authors\":\"Lingju Meng, Mohammad Awashra, Seyed Mehran Mirmohammadi, Maryam Mousavi, Jaana Vapaavuori, Ville Jokinen, Sami Franssila\",\"doi\":\"10.1039/d4nr04226c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superhydrophobic surfaces are essential in various industries such as textiles, aviation, electronics and biomedical devices due to their exceptional water-repellent properties. Black silicon (b-Si) would be an ideal candidate for some applications due to its nanoscale topography made with a convenient lithography-free step and Complementary Metal-Oxide-Semiconductor (CMOS) compatible fabrication process. However, its use is hindered by serious issues with mechanical robustness. This study presents ‘nanojungle b-Si,’ characterized by elongated and deep nanostructures and fabricated through photoresist micromasks associating with Bosch etching. These nanojungle structures exhibit enhanced robustness and sustain superhydrophobicity under abrasive conditions, outperforming traditional ‘nanograss b-Si.’ Optical analysis indicates that the nanojungle structures dissipate abrasive impact energy more effectively, preserving surface roughness and hydrophobicity. Notably, nanojungle b-Si maintains its superhydrophobicity even after impinging by 20 g of sand impacting from a height of 40 cm. This advancement in b-Si surfaces holds significant potential for enhancing future technological applications.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4nr04226c\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04226c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超疏水表面由于其优异的防水性能,在纺织、航空、电子和生物医学设备等各个行业中都是必不可少的。黑硅(b-Si)将是一些应用的理想候选者,因为它的纳米级形貌是由方便的无光刻步骤和互补金属氧化物半导体(CMOS)兼容的制造工艺制成的。然而,它的使用受到机械稳健性的严重问题的阻碍。这项研究提出了“纳米丛林b-Si”,其特点是细长和深度的纳米结构,并通过与博世蚀刻相关的光刻胶微掩模制造。这些纳米丛林结构在磨料条件下表现出增强的坚固性和超疏水性,优于传统的“纳米草b-Si”。光学分析表明,纳米丛林结构更有效地消散磨料冲击能量,保持表面粗糙度和疏水性。值得注意的是,纳米丛林b-Si即使在受到来自40厘米高度的20克沙子撞击后仍保持其超疏水性。b-Si表面的这一进步具有增强未来技术应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced superhydrophobic robustness of black silicon employing nanojungle structures
Superhydrophobic surfaces are essential in various industries such as textiles, aviation, electronics and biomedical devices due to their exceptional water-repellent properties. Black silicon (b-Si) would be an ideal candidate for some applications due to its nanoscale topography made with a convenient lithography-free step and Complementary Metal-Oxide-Semiconductor (CMOS) compatible fabrication process. However, its use is hindered by serious issues with mechanical robustness. This study presents ‘nanojungle b-Si,’ characterized by elongated and deep nanostructures and fabricated through photoresist micromasks associating with Bosch etching. These nanojungle structures exhibit enhanced robustness and sustain superhydrophobicity under abrasive conditions, outperforming traditional ‘nanograss b-Si.’ Optical analysis indicates that the nanojungle structures dissipate abrasive impact energy more effectively, preserving surface roughness and hydrophobicity. Notably, nanojungle b-Si maintains its superhydrophobicity even after impinging by 20 g of sand impacting from a height of 40 cm. This advancement in b-Si surfaces holds significant potential for enhancing future technological applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信