Jiawei Li, Miaojin Wei, Bifa Ji, Sunpei Hu, Jing Xue, Donghao Zhao, Haoyuan Wang, Chunxiao Liu, Yifan Ye, Jilong Xu, Jie Zeng, Ruquan Ye, Yongping Zheng, Tingting Zheng, Chuan Xia
{"title":"铜催化单钴原子合金化的电化学CO2甲烷化","authors":"Jiawei Li, Miaojin Wei, Bifa Ji, Sunpei Hu, Jing Xue, Donghao Zhao, Haoyuan Wang, Chunxiao Liu, Yifan Ye, Jilong Xu, Jie Zeng, Ruquan Ye, Yongping Zheng, Tingting Zheng, Chuan Xia","doi":"10.1002/anie.202417008","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical reduction of carbon dioxide (CO<sub>2</sub>) to methane (CH<sub>4</sub>) presents a promising solution for mitigating CO<sub>2</sub> emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO<sub>2</sub> to CH<sub>4</sub>, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co<sub>1</sub>Cu) that achieved a CH<sub>4</sub> Faradaic efficiency exceeding 60 % with a partial current density of −482.7 mA cm<sup>−2</sup>. Mechanistic investigations revealed that the incorporation of single Co atoms enhances the activation and dissociation of H<sub>2</sub>O molecules, thereby lowering the energy barrier for the hydrogenation of *CO intermediates. In situ spectroscopic experiments and density functional theory simulations further demonstrated that the modulation of the *CO adsorption configuration, with stronger bridge-binding, favours deep reduction to CH<sub>4</sub> over the C−C coupling or CO desorption pathways. Our findings underscore the potential of Co<sub>1</sub>Cu catalysts in overcoming the selectivity-activity trade-off, paving the way for efficient and scalable CO<sub>2</sub>-to-CH<sub>4</sub> conversion technologies.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 8","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper-Catalysed Electrochemical CO2 Methanation via the Alloying of Single Cobalt Atoms\",\"authors\":\"Jiawei Li, Miaojin Wei, Bifa Ji, Sunpei Hu, Jing Xue, Donghao Zhao, Haoyuan Wang, Chunxiao Liu, Yifan Ye, Jilong Xu, Jie Zeng, Ruquan Ye, Yongping Zheng, Tingting Zheng, Chuan Xia\",\"doi\":\"10.1002/anie.202417008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electrochemical reduction of carbon dioxide (CO<sub>2</sub>) to methane (CH<sub>4</sub>) presents a promising solution for mitigating CO<sub>2</sub> emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO<sub>2</sub> to CH<sub>4</sub>, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co<sub>1</sub>Cu) that achieved a CH<sub>4</sub> Faradaic efficiency exceeding 60 % with a partial current density of −482.7 mA cm<sup>−2</sup>. Mechanistic investigations revealed that the incorporation of single Co atoms enhances the activation and dissociation of H<sub>2</sub>O molecules, thereby lowering the energy barrier for the hydrogenation of *CO intermediates. In situ spectroscopic experiments and density functional theory simulations further demonstrated that the modulation of the *CO adsorption configuration, with stronger bridge-binding, favours deep reduction to CH<sub>4</sub> over the C−C coupling or CO desorption pathways. Our findings underscore the potential of Co<sub>1</sub>Cu catalysts in overcoming the selectivity-activity trade-off, paving the way for efficient and scalable CO<sub>2</sub>-to-CH<sub>4</sub> conversion technologies.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 8\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202417008\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202417008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
电化学将二氧化碳(CO2)还原为甲烷(CH4)是一种很有前途的解决方案,可以在生产有价值的化学原料的同时减少二氧化碳的排放。虽然单原子催化剂在选择性将CO2转化为CH4方面已经显示出潜力,但它们有限的活性位点往往阻碍了高电流密度的实现,造成了选择性-活性困境。在本研究中,我们开发了一种单原子钴(Co)掺杂铜催化剂(Co1Cu),其CH4法拉第效率超过60%,分电流密度为-482.7 mA cm-2。机理研究表明,单个Co原子的加入增强了H2O分子的活化和解离,从而降低了* Co中间体加氢的能垒。原位光谱实验和密度泛函理论模拟进一步表明,与C-C偶联或CO脱附途径相比,具有更强桥结的*CO吸附构型的调制更有利于深度还原为CH4。我们的研究结果强调了Co1Cu催化剂在克服选择性-活性权衡方面的潜力,为高效和可扩展的co2 - ch4转化技术铺平了道路。
Copper-Catalysed Electrochemical CO2 Methanation via the Alloying of Single Cobalt Atoms
The electrochemical reduction of carbon dioxide (CO2) to methane (CH4) presents a promising solution for mitigating CO2 emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO2 to CH4, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co1Cu) that achieved a CH4 Faradaic efficiency exceeding 60 % with a partial current density of −482.7 mA cm−2. Mechanistic investigations revealed that the incorporation of single Co atoms enhances the activation and dissociation of H2O molecules, thereby lowering the energy barrier for the hydrogenation of *CO intermediates. In situ spectroscopic experiments and density functional theory simulations further demonstrated that the modulation of the *CO adsorption configuration, with stronger bridge-binding, favours deep reduction to CH4 over the C−C coupling or CO desorption pathways. Our findings underscore the potential of Co1Cu catalysts in overcoming the selectivity-activity trade-off, paving the way for efficient and scalable CO2-to-CH4 conversion technologies.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.