铜催化单钴原子合金化的电化学CO2甲烷化

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiawei Li, Miaojin Wei, Bifa Ji, Sunpei Hu, Jing Xue, Donghao Zhao, Haoyuan Wang, Chunxiao Liu, Yifan Ye, Jilong Xu, Jie Zeng, Ruquan Ye, Yongping Zheng, Tingting Zheng, Chuan Xia
{"title":"铜催化单钴原子合金化的电化学CO2甲烷化","authors":"Jiawei Li,&nbsp;Miaojin Wei,&nbsp;Bifa Ji,&nbsp;Sunpei Hu,&nbsp;Jing Xue,&nbsp;Donghao Zhao,&nbsp;Haoyuan Wang,&nbsp;Chunxiao Liu,&nbsp;Yifan Ye,&nbsp;Jilong Xu,&nbsp;Jie Zeng,&nbsp;Ruquan Ye,&nbsp;Yongping Zheng,&nbsp;Tingting Zheng,&nbsp;Chuan Xia","doi":"10.1002/anie.202417008","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical reduction of carbon dioxide (CO<sub>2</sub>) to methane (CH<sub>4</sub>) presents a promising solution for mitigating CO<sub>2</sub> emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO<sub>2</sub> to CH<sub>4</sub>, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co<sub>1</sub>Cu) that achieved a CH<sub>4</sub> Faradaic efficiency exceeding 60 % with a partial current density of −482.7 mA cm<sup>−2</sup>. Mechanistic investigations revealed that the incorporation of single Co atoms enhances the activation and dissociation of H<sub>2</sub>O molecules, thereby lowering the energy barrier for the hydrogenation of *CO intermediates. In situ spectroscopic experiments and density functional theory simulations further demonstrated that the modulation of the *CO adsorption configuration, with stronger bridge-binding, favours deep reduction to CH<sub>4</sub> over the C−C coupling or CO desorption pathways. Our findings underscore the potential of Co<sub>1</sub>Cu catalysts in overcoming the selectivity-activity trade-off, paving the way for efficient and scalable CO<sub>2</sub>-to-CH<sub>4</sub> conversion technologies.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 8","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper-Catalysed Electrochemical CO2 Methanation via the Alloying of Single Cobalt Atoms\",\"authors\":\"Jiawei Li,&nbsp;Miaojin Wei,&nbsp;Bifa Ji,&nbsp;Sunpei Hu,&nbsp;Jing Xue,&nbsp;Donghao Zhao,&nbsp;Haoyuan Wang,&nbsp;Chunxiao Liu,&nbsp;Yifan Ye,&nbsp;Jilong Xu,&nbsp;Jie Zeng,&nbsp;Ruquan Ye,&nbsp;Yongping Zheng,&nbsp;Tingting Zheng,&nbsp;Chuan Xia\",\"doi\":\"10.1002/anie.202417008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electrochemical reduction of carbon dioxide (CO<sub>2</sub>) to methane (CH<sub>4</sub>) presents a promising solution for mitigating CO<sub>2</sub> emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO<sub>2</sub> to CH<sub>4</sub>, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co<sub>1</sub>Cu) that achieved a CH<sub>4</sub> Faradaic efficiency exceeding 60 % with a partial current density of −482.7 mA cm<sup>−2</sup>. Mechanistic investigations revealed that the incorporation of single Co atoms enhances the activation and dissociation of H<sub>2</sub>O molecules, thereby lowering the energy barrier for the hydrogenation of *CO intermediates. In situ spectroscopic experiments and density functional theory simulations further demonstrated that the modulation of the *CO adsorption configuration, with stronger bridge-binding, favours deep reduction to CH<sub>4</sub> over the C−C coupling or CO desorption pathways. Our findings underscore the potential of Co<sub>1</sub>Cu catalysts in overcoming the selectivity-activity trade-off, paving the way for efficient and scalable CO<sub>2</sub>-to-CH<sub>4</sub> conversion technologies.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 8\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202417008\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202417008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学将二氧化碳(CO2)还原为甲烷(CH4)是一种很有前途的解决方案,可以在生产有价值的化学原料的同时减少二氧化碳的排放。虽然单原子催化剂在选择性将CO2转化为CH4方面已经显示出潜力,但它们有限的活性位点往往阻碍了高电流密度的实现,造成了选择性-活性困境。在本研究中,我们开发了一种单原子钴(Co)掺杂铜催化剂(Co1Cu),其CH4法拉第效率超过60%,分电流密度为-482.7 mA cm-2。机理研究表明,单个Co原子的加入增强了H2O分子的活化和解离,从而降低了* Co中间体加氢的能垒。原位光谱实验和密度泛函理论模拟进一步表明,与C-C偶联或CO脱附途径相比,具有更强桥结的*CO吸附构型的调制更有利于深度还原为CH4。我们的研究结果强调了Co1Cu催化剂在克服选择性-活性权衡方面的潜力,为高效和可扩展的co2 - ch4转化技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Copper-Catalysed Electrochemical CO2 Methanation via the Alloying of Single Cobalt Atoms

Copper-Catalysed Electrochemical CO2 Methanation via the Alloying of Single Cobalt Atoms

The electrochemical reduction of carbon dioxide (CO2) to methane (CH4) presents a promising solution for mitigating CO2 emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO2 to CH4, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co1Cu) that achieved a CH4 Faradaic efficiency exceeding 60 % with a partial current density of −482.7 mA cm−2. Mechanistic investigations revealed that the incorporation of single Co atoms enhances the activation and dissociation of H2O molecules, thereby lowering the energy barrier for the hydrogenation of *CO intermediates. In situ spectroscopic experiments and density functional theory simulations further demonstrated that the modulation of the *CO adsorption configuration, with stronger bridge-binding, favours deep reduction to CH4 over the C−C coupling or CO desorption pathways. Our findings underscore the potential of Co1Cu catalysts in overcoming the selectivity-activity trade-off, paving the way for efficient and scalable CO2-to-CH4 conversion technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信