Yun Gao, Xiaoyue Zhang, Hang Zhang, Jian Peng, Weibo Hua, Yao Xiao, Xiao-Hao Liu, Li Li, Yun Qiao, Jiao-Zhao Wang, Chaofeng Zhang, Shulei Chou
{"title":"用于实用钠离子电池的零废聚阴离子和普鲁士蓝复合材料","authors":"Yun Gao, Xiaoyue Zhang, Hang Zhang, Jian Peng, Weibo Hua, Yao Xiao, Xiao-Hao Liu, Li Li, Yun Qiao, Jiao-Zhao Wang, Chaofeng Zhang, Shulei Chou","doi":"10.1002/adma.202409782","DOIUrl":null,"url":null,"abstract":"<p>Closed-loop transformation of raw materials into high-value-added products is highly desired for the sustainable development of the society but is seldom achieved. Here, a low-cost, solvent-free and “zero-waste” mechanochemical protocol is reported for the large-scale preparation of cathode materials for sodium-ion batteries (SIBs). This process ensures full utilization of raw materials, effectively reduces water consumption, and simplifies the operating process. Benefiting from the synergistic effect between the cubic Prussian blue analogs (c-NFFHCF) and dehydrated polyanionic sulfates (m-NFS), the generated composite exhibits promising wide-temperature electrochemical performance and excellent practical application potential. The synergistic effect between m-NFS and c-NFFHCF in the composite is revealed through multiple in situ characterizations and density functional theory calculations. The proposed mechanochemical strategy can be scaled to a kilogram-grade level, providing a sustainable method for the value-added utilization of the by-products during Prussian blue analogs synthesis, advancing the design of “zero-waste” cathode materials for low-cost practical SIBs.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 8","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Waste Polyanion and Prussian Blue Composites toward Practical Sodium-Ion Batteries\",\"authors\":\"Yun Gao, Xiaoyue Zhang, Hang Zhang, Jian Peng, Weibo Hua, Yao Xiao, Xiao-Hao Liu, Li Li, Yun Qiao, Jiao-Zhao Wang, Chaofeng Zhang, Shulei Chou\",\"doi\":\"10.1002/adma.202409782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Closed-loop transformation of raw materials into high-value-added products is highly desired for the sustainable development of the society but is seldom achieved. Here, a low-cost, solvent-free and “zero-waste” mechanochemical protocol is reported for the large-scale preparation of cathode materials for sodium-ion batteries (SIBs). This process ensures full utilization of raw materials, effectively reduces water consumption, and simplifies the operating process. Benefiting from the synergistic effect between the cubic Prussian blue analogs (c-NFFHCF) and dehydrated polyanionic sulfates (m-NFS), the generated composite exhibits promising wide-temperature electrochemical performance and excellent practical application potential. The synergistic effect between m-NFS and c-NFFHCF in the composite is revealed through multiple in situ characterizations and density functional theory calculations. The proposed mechanochemical strategy can be scaled to a kilogram-grade level, providing a sustainable method for the value-added utilization of the by-products during Prussian blue analogs synthesis, advancing the design of “zero-waste” cathode materials for low-cost practical SIBs.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 8\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202409782\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202409782","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Zero-Waste Polyanion and Prussian Blue Composites toward Practical Sodium-Ion Batteries
Closed-loop transformation of raw materials into high-value-added products is highly desired for the sustainable development of the society but is seldom achieved. Here, a low-cost, solvent-free and “zero-waste” mechanochemical protocol is reported for the large-scale preparation of cathode materials for sodium-ion batteries (SIBs). This process ensures full utilization of raw materials, effectively reduces water consumption, and simplifies the operating process. Benefiting from the synergistic effect between the cubic Prussian blue analogs (c-NFFHCF) and dehydrated polyanionic sulfates (m-NFS), the generated composite exhibits promising wide-temperature electrochemical performance and excellent practical application potential. The synergistic effect between m-NFS and c-NFFHCF in the composite is revealed through multiple in situ characterizations and density functional theory calculations. The proposed mechanochemical strategy can be scaled to a kilogram-grade level, providing a sustainable method for the value-added utilization of the by-products during Prussian blue analogs synthesis, advancing the design of “zero-waste” cathode materials for low-cost practical SIBs.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.